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Abstract — Binary quadratic programming is a 

classical combinatorial optimization problem that has 

many real-world applications. This paper presents a 

method for solving the quadratic programming problem 

with circulant matrix by reformulating and relaxing it 

into a separable optimization problem. The proposed 

method determines local suboptimal solutions. To solve 

the relaxing problem, the DCA algorithm it is proposed to 

calculate the solutions, in the general case, only local 

suboptimal. 
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I. INTRODUCTION 

Consider the following linearly-constrained binary 

quadratic programming problem: 

 

 𝑓(𝑥) = 𝑥
𝑇
𝑄𝑥 → 𝑚𝑎𝑥

subject to

𝐴𝑥 = 𝑏,

𝑥 ∈ {0,1}𝑛

}                                             (1) 

 

where 𝑄 is a symmetric n×n real matrix, 𝐴 is an m×n 

matrix, 𝑟𝑎𝑛𝑘(𝐴) = 𝑚 ≤ 𝑛, and b is an m real vector. 

We will briefly describe the notation used in this 

paper. All vectors are column vectors. The subscript 

notation 𝑦𝑘  refers to an element of the vector y. A 

superscript k is used to denote iteration numbers. 

Superscript “T” denotes transposition.  

Over the years, various methods have been 

developed to solve the problem (1) by:  

- linear reformulations [1], [2], [3]; 

- convex reformulations [4], [5]; 

- continuous convex programming [6];  

- Lagrangian, semidefinite and convex 

quadratic relaxation, [7], [8], [9], [10]. 

In this paper we will consider that the Q matrix is a 

symmetric circulant matrix [11]: 

 

𝑄 =

(

 
 

𝑞0    𝑞1   𝑞2  ⋯ 𝑞𝑛−2     𝑞𝑛−1
𝑞1  𝑞2  𝑞3    ⋯   𝑞𝑛−1     𝑞0
𝑞2      𝑞3   𝑞𝑛⋯   𝑞0       𝑞1
⋮      ⋮       ⋮      ⋮    ⋮          ⋮ 

𝑞𝑛−1 𝑞0    𝑞1⋯    𝑞𝑛−3   𝑞𝑛−2)

 
 

. 

 

Circulant matrices appear in a variety of 

mathematical and engineering applications such as 

signal processing and error correction of codes 

[12],[13]. 

In this context above, we present a method for 

solving the quadratic programming problem with 

circulant matrices Q. The problem is converted into a 

separable programming problem, which consecutively 

is relaxed to a problem with the objective function 

represented as the difference of two convex functions, a 

problem called in the literature DC programming (DC-

Difference of Convex functions). 

 

II. EIGENVALUES AND EIGENVECTORS OF 

CIRCULANT MATRIX 

The first row of the circulant matrix Q  

 

𝑞0    𝑞1   𝑞2  ⋯ 𝑞𝑛−2     𝑞𝑛−1  

 

is called the generator of Q. 

The eigenvalues of the symmetric matrix Q are real 

numbers and are given by 

https://doi.org/10.52326/ic-ecco.2022/CS.01
mailto:daniela.istrati@ia.utm.md
mailto:vasile.moraru@ia.utm.md
mailto:sergiu.zaporojan@adm.utm.md


20-21 October, 2022 

Chisinau, Republic of Moldova IC ECCO-2022 
The 12th International Conference on 

Electronics, Communications and Computing 

   

 

155 

 

 

𝜆𝑗 = 𝑞0 + 𝑞1𝜔𝑗 + 𝑞2𝜔𝑗
2 +⋯+ 𝑞𝑛−1𝜔𝑗

𝑛−1            

(2) 

𝑗 = 1,2,⋯ , 𝑛, 

where  

 

𝜔𝑗 = exp (
2𝜋(𝑗−1)

𝑛
). 

 

Note: for n even numbers ( 𝑛 = 2𝑘) we have 

𝜆𝑗 = 𝜆𝑛−𝑗 . 

For 𝑗 = 1,2,⋯ , 𝑛, the corresponding eigenvectors 

are given by [11]: 

 

𝑝𝑗 = (𝜔
0, 𝜔𝑗−1, 𝜔2(𝑗−1), ⋯ , 𝜔(𝑗−1)(𝑗−1) )

𝑇
        (3) 

 

Here 𝜔 is the primitive root of unity : 

 

𝜔 = 𝑒𝑥𝑝 (
2𝜋𝑖

𝑛
), 𝑖 = √−1. 

 

All circulant matrices can be diagonalized by the 

same matrix F with the columns 𝑝𝑗 , 𝑗 = 1,2,⋯ , 𝑛 [11]: 

 

𝐹 =
1

√𝑛
(𝑝1 𝑝2 ⋯ 𝑝𝑛  ) =  

 

= 
1

√𝑛

(

 
 

1                 1           1    ⋯                 1
1            𝜔        𝜔2    ⋯            𝜔

𝑛−1

1          𝜔2         𝜔4       ⋯     𝜔2(𝑛−1)

⋮          ⋮            ⋮           ⋮                  ⋮ 
1      𝜔𝑛−1    𝜔2(𝑛−1)   ⋯   𝜔(𝑛−1)(𝑛−1))

 
 

. 

 

The matrix F is the Fourier matrix (the Discret 

Fourier Transform DFT) [6].  

F is a matrix with the outstanding properties: 

 

- 𝐹𝑇 = 𝐹 

-  𝐹2 = 𝐼 = (

1 0 ⋯0
0 1 ⋯0
⋮   ⋮ ⋱ ⋮
0  0 ⋯1

) 

- det 𝐹 = 1, 

- 𝐹−1 = 𝐹 

- 𝑆𝑝(𝐹) = {−1,1} 
 

Moreover, the matrix 𝐹 is a well-conditioned matrix 

(𝑐𝑜𝑛𝑑(𝐹)=1. This is important from the point of view 

of numerical calculation: small perturbations in the 

input data will not produce large variations in the 

calculations [14]. 

The circulant matrices are diagonalized by the 

Fourier matrix F, i.e. we can write 

 

𝑄 = 𝐹Λ𝐹                                                               (4) 

  

where Λ is the diagonal matrix: 

Λ = 𝐷𝑖𝑎𝑔 (𝜆1 , 𝜆2 , ⋯ , 𝜆𝑛) = 

=

(

 
 

𝜆1    0   0 ⋯   0    0
0 𝜆2  0    ⋯    0    0
0 0 𝜆3     ⋯    0    0
⋮  ⋮   ⋮          ⋮    ⋮     ⋮ 
0  0  0    ⋯     0  𝜆𝑛)

 
 

                                      (5) 

Thus the symmetric matrix Q is expressed in terms 

of matrices that contain its eigenvalues (2) and the 

components of the eigenvectors (3). Using the Fourier 

matrix F, resulting from (4) and (5), the diagonalization 

of the circulant matrix can be performed Q: 𝐹𝑄𝐹 = Λ. 

 

III. REFORMULATION OF THE QUADRATIC PROBLEM 

AS A SEPARABLE PROGRAMMING PROBLEM 

The objective function f(x) can be rewritten as: 

𝑓(𝑥) = 𝓍𝑇𝑄𝓍 = 𝑥𝑇𝐹Λ𝐹𝑥 = (𝐹𝑥)𝑇Λ𝐹𝑥.  
 

We note 

 

𝑦 = 𝐹𝑥 = (𝑦1 𝑦2 ⋯ 𝑦𝑛)
𝑇
. 

 

As the matrix F is orthogonal (𝐹−1 = 𝐹 ), we have 

 

 𝑥 = 𝐹𝑦. 
 

Then problem (1) becomes a separable 

programming problem: 

𝜑(𝑦) = 𝑦𝑇Λ𝑦 =∑ 𝜆𝑘𝑦𝑘
2

𝑛

𝑘=1

→ 𝑚𝑎𝑥

subject to

𝐴𝐹𝑦 = 𝑏,

𝐹𝑦 ∈ {0 ,1}𝑛 }
 
 

 
 

                     (6) 

 

Among the eigenvalues of the Q matrix are both 

positive and negative numbers. The function 𝜑(𝑦) can 

be rewritten as the difference between two convex 

functions: 
 

𝜑(𝑦) = 𝜑1(𝑦) − 𝜑2(𝑦) 
 

where 

𝜑1 = ∑ 𝜆𝑘𝑦𝑘
2

𝜆𝑘>0
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𝜑2 = ∑(−𝜆𝑘)𝑦𝑘
2

𝜆𝑘<0

 

The last constraints of problem (6) make it very 

difficult to solve it. If constraints are not taken into 

account (𝐹𝑦 ∈ {0 ,1}𝑛), then the problem (6) becomes a 

nonconvex separable quadratic programming problem. 

A practical approach would be to relax the conditions 

 

 𝐹𝑦 ∈ {0 ,1}𝑛 ,  

by replacing them with 

 0 ≤ 𝐹𝑦 ≤ 1,  

i.e. with 

0 ≤ 𝑝𝑗
𝑇𝑦𝑗 ≤ 1, 𝑗 = 1,2,⋯ . 𝑛 

Thus we obtain the relaxed problem  

𝜑
1
(𝑦) − 𝜑

2
(𝑦) → 𝑚𝑎𝑥

subject to

𝐴𝐹𝑦 = 𝑏,

0 ≤ 𝐹𝑦 ≤ 1

}                                        (7) 

 
which is a DC programming problem [15].  

IV. DC ALGORITHM 

 

As it is mentioned above, to solve the relaxed 

problem (7) we will use the DCA method [15]. 

We denote the set of indices 𝑖𝑠  for which the 

eigenvalues 𝜆𝑖𝑠 > 0: 

 

𝐼 = {𝑖|𝜆𝑖 > 0} = {𝑖1, 𝑖2, ⋯ , 𝑖𝑠}. 
 

The DCA method is of the primal-dual type and is 

based on the construction of two strings 

 

{𝑦(𝑘)}, {𝑣(𝑘)}   
  

which are calculated at each iteration as follows: 

 

Step 1. 𝑦(𝑜) - the initial state approximation, 𝑘 = 0. 

 

Step 2. It is determined 

 

𝑢(𝑘) = ∇𝜑1(𝑦
(𝑘)) =

(

 
 
 
 
 
 

𝜕𝜑1(𝑦
(𝑘))

𝜕𝑦𝑖1
𝜕𝜑1(𝑦

(𝑘))

𝜕𝑦𝑖2
⋮

𝜕𝜑1(𝑦
(𝑘))

𝜕𝑦𝑖𝑠 )

 
 
 
 
 
 

 

 

Step 3. It is established 𝑦(𝑘+1)  the solution of the 

convex separable programming problem:  

 

∑(−𝜆𝑘)𝑦
2

𝜆𝑘<0

− ∑ 𝜆𝑘𝑢
(𝑘)

𝜆𝑘>0

→ 𝑚𝑖𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝐴𝐹𝑦 = 𝑏,

0 ≤ 𝑝𝑗
𝑇𝑦𝑗 ≤ 1,

𝑗 = 1,2,⋯ . 𝑛. }
  
 

  
 

 

 

Step 4. If the stop criterion is checked, then STOP. 

Otherwise, 𝑘 = 𝑘 + 1 will be taken and it is proceed to 

Step 2.  

V. CONCLUSIONS 

In this paper, the 0-1 quadratic nonconvex 

programming problem with circulant matrices was 

considered. Such problems are NP-hard [16]. The 

diagonalization of the circulant matrix using the Fourier 

matrix allows reducing the considered problem to a 

separable programming problem. 

To solve the relaxing problem, the DCA algorithm 

is proposed to calculate the solutions, in the general 

case, only local suboptimal. In order to find the optimal 

global solutions, other methods must be used, such as 

the branch and bound method [17]. 

 These methods are slow and require many 

calculations that grow exponentially with the size of the 

problem. DC Numerical simulations show that in the 

case of non-convex quadratic programming problems, it 

is more advantageous to apply the DC Algorithm than 

the branch and bound method. 
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