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Abstract. Medical images are an important part of a patient's health record, and they need 
data manipulation, processing, and handling by computers. As a result, medical data is a type 
of bigdata, and its analysis has become complex. Because manual disease diagnosis takes 
longer and produces less accurate results, it may result in incorrect treatment. Three DCNN 
architectures have been exploited and evaluated for tumor detection and classification. The 
sample image for the experimentation is chosen from Lung Image Database Consortium 
(LIDC) with Image Database Resource Initiative (IDRI) and Kaggle dataset which consists of 
normal and abnormal image. The experimental results of proposed DCNN classifier achieved 
best accuracy than the GoogleNet, AlexNet, Artificial neural network and support vector 
machine. 
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Rezumat. Imaginile medicale sunt o parte importantă a dosarului de sănătate al pacientului 
și necesită manipularea, procesarea și manipularea datelor de către computere. Drept urmare, 
datele medicale sunt un tip de bigdata, iar analiza lor a devenit complexă. Deoarece 
diagnosticarea manuală a bolii durează mult și produce rezultate mai puțin precise, aceasta 
poate duce la un tratament incorect. Trei arhitecturi DCNN au fost exploatate și evaluate 
pentru detectarea și clasificarea tumorilor. Imaginea eșantion pentru experimentare este 
aleasă din Lung Image Database Consortium (LIDC) cu Image Database Resource Initiative (IDRI) 
și setul de date Kaggle care constă dintr-o imagine normală și anormală. Rezultatele 
experimentale ale clasificatorului DCNN propus au obținut mai bună acuratețe decât 
GoogleNet, AlexNet, rețeaua neuronală artificială și mașina de suport vector. 

Cuvinte cheie: cancer pulmonar, DCNN, LIDC și GoogleNet, AlexNet. 

1. Introduction
The Lung tumor detection and classification is one of the most difficult tasks in

medical image processing due to the wide variation in tumor density, size, and location, as 
well as the low contrast of the scanned image. Because it directly affects human mortality, 



A. B. Mathews, K. K. Prasad 87 

Journal of Engineering Science September, 2022, Vol. XXIX (3)

the accuracy of such a classification system should be high. When the volume of input is 
large, the existing classifier performs poorly. As a result, there is a need to develop an 
algorithm that provides greater accuracy in lung tumor detection and classification. 
Tumors' unpredictable appearance makes detecting their presence, as well as determining 
shape and size, difficult tasks in medical image analysis. Medical images are prone to contrast 
and luminance issues, resulting in very low image quality and degraded image features. As a 
result, it is critical to develop an algorithm that combines image enhancement and 
segmentation to solve the segmentation problem. 

2. Survey of the work
SVM classifier for predicting lung tumors. Image denoising was performed using

variation-based denoising, followed by optimal thresholding and morphological-based 
segmentation. SVM classifier was used to classify lung tumors. Pixels within the very dense 
body and chest wall structures have a different density distribution than low-density pixels 
[1]. The region of interest is a lung nodule, and a labelling algorithm is used to extract the 
region. Correlation, homogeneity, energy, contrast, and area were extracted as texture and 
region features. 

A hyper plane represents the largest separation or margin between the two classes in 
an SVM linear classifier used for tumor classification. When tested on a large image database, 
this classification algorithm performs less well [2]. 

Eigengene extraction via Independent Component Analysis (ICA) is one method for 
tumor classification feature extraction. A novel approach for tumor classification based on 
eigengene and SVM-based Classifier Committee Learning (CCL) algorithm. The algorithm 
must still investigate the design of an effective approach for optimal results [3]. 

SVM classifier for classifying cancer stages. Image features are extracted after 
preprocessing. Then, for classifying medical images, the support vector machine algorithm is 
used. When the input data became large, processing time was required, and it was suspected 
to be notoriously redundant [4]. 

By applying the kernel trick to maximum margin hyper planes, a nonlinear classifier 
was created. Kernel functions of various types were used, including polynomial, quadratic, 
and Multi-Layer Perceptron (MLP). SVM produces better classification results [5-7]. 
They combine generalization control with a method for dealing with the curse of 
dimensionality. The kernel mapping provides a unifying framework for the majority of the 
model architectures that are commonly used. When the number of images used in the 
testing process increases, the accuracy of image enhancement must improve [8-10].  

A two-stage CAD system for automatically detecting and classifying MRI brain tumors. 
The system classified brain tumor images as normal or abnormal. The abnormal MRI is then 
used to determine whether the tumor is benign or malignant [11-14]. K-means clustering is 
used for image segmentation, DWT is used for feature extraction, and PCA is used for feature 
reduction. The feature reduction method is used after feature extraction to select the relevant 
features. Classification was used to determine whether an image was normal or abnormal [6]. 
This system was tested for brain image classification, which had not previously been done 
for the other modalities. ANN is used to create a system for detecting and classifying brain 
cancer. The main issue in detecting the edge of a tumor is that the tumor appears very dark 
on the image. Histogram equalization was used to solve this problem [15-16]. Segmentation 
is the process of dividing an image into its constituent parts or objects.  
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Deep learning architecture for classifying medical images of anatomy objects in a 
modified CNN architecture with different convolutional and pooling layers used for feature 
learning in the modified CNN architecture [7]. The outcomes were compared to existing 
architectures such as LeNet, AlexNet, and GoogLeNet. a pulmonary CT image classification 
using a hybrid 3D-DCNN architecture. This CNN architecture was implemented with various 
layers, and the results were compared to 3D-AlexNet and 3D-GoogleNet. 

3. Layout of Proposed Work
DCNN architecture 2 is made up of thirteen layers: seven convolutional layers, four

pooling layers, a fully connected layer, and a SoftMax classifier. All convolutional layers have 
a filter size of 5 5 and pooling layers have a filter size of 2 2. In convolutional layers, the 
number of filters on feature maps is 64, 96, 128, 192, and 256, respectively. Similarly, DCNN 
architecture 3 has seven convolutional layers, four pooling layers, two fully connected layers, 
and a SoftMax classifier. In the first convolutional layer, 64 filters with 5 5 filter size are 
applied to 256 256 patch size input images. By applying 2 2 filters, the max pooling layer 
reduces the output size of the previous convolutional layer. The first pooling layer's output 
image size is 126126; this image is passed to the second and third convolutional layers, which 
apply 98 and 128 filters to the image, respectively. Following that, max pooling is used, 
resulting in an output image size of 5959. Initially, DCNN architecture 1 was implemented 
with a small number of layers, yielding good results up to a thousand images. Accuracy 
decreases as the number of images in the dataset grows. As a result, two additional DCNN 
architectures are implemented in this work that shows in Figure 1.  

To improve accuracy, the number of convolutional and pooling layers is increased in 
this architecture compared to architecture 1. Approximately ten thousand images were tested 
with these classifiers and yielded better results. Similarly, the fourth and fifth convolutional 
layers with 128 and 192 filters are applied to the down sampled images with the third max 
pooling layer, yielding a 2525 feature map. The model progresses through the remaining 
layers until it reaches fully connected layers, where all neurons are connected to all neurons 
of the previous layer. 

Figure 1. Proposed system flow.
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DCNN consists of two important layers: 
1. Input layer
2. Classification layer

Figure 2. Proposed DCNN Architecture 3.

Finally, the SoftMax classifier is used to determine whether the images are normal, 
benign, or malignant. The accuracy of the second architecture is higher than that of the first. 
In addition, one fully connected layer with the same layer descriptions and hyperparameters 
is included in architecture 3 shows in Figure 2. 

4. Results and Discussion
From the result, 85.02% accuracy rate obtained in the proposed architecture 3 which

is higher than other two architectures. The second-best accuracy rate is 84.34% and the next 
better accuracy rate achieved by 83.53% of the proposed architecture 2. By considering of all 
three architectures, the architecture 3 used a greater number of convolutional and fully 
connected layers it leads to extract more features and resulted in received higher accuracy 
rate. Graphical representation of accuracy comparison is presented in the Figure 3. 

Figure 3. Accuracy of three proposed DCNN Architectures.



90 A novel classification with deep convolutional neural networks on pulmonary nodule 

Journal of Engineering Science September, 2022, Vol. XXIX (3)

Precision is calculated for all three architectures using 9696, 128 128, 192192, and 
256 256 patches, in that order. The results show that architecture 1 had a higher true positive 
prediction rate in 128 128 patches, but this rate gradually decreased as patch size increased. 
The architecture 2 received better results in 128 128 and 256 256 patches, but the true 
positive rate gradually increased in architecture 3, which also produced better results when 
compared to the other two architectures, as shown in Figure 4. 

Figure 4. Precision Comparison for proposed architectures.

The results show that the GoogleNet achieved higher precision of 82.43%, recall of 
83.55% and Specificity of 84.77% compared to AlexNet architecture, but the proposed 
architecture is obtained higher precision, recall and specificity than the GoogleNet 
architecture shown in Figure 5. 

Figure 5. Performance of proposed DCNN architecture with existing algorithm.

5. Conclusions
Deep learning-based algorithms are currently emerging in the field of medical image

classification. Deep learning-based DCNN architectures for CT lung image detection and 
classification were presented in this section. The layers of deep learning architecture were 
discussed in detail, along with the proposed three types of DCNN architectures. This section 
describes the hyperparameters used in the proposed architectures, as well as the input and 
output feature sizes. The proposed DCNN architectures take a CT lung image as input and 



A. B. Mathews, K. K. Prasad 91 

Journal of Engineering Science September, 2022, Vol. XXIX (3)

classify it as normal, benign, or malignant. The experimental results show that the proposed 
architecture 3 outperforms other existing architectures in terms of accuracy, precision, recall, 
and specificity for CT lung image classification. In the future, the proposed HPSO algorithm 
can be tweaked to produce higher accuracy with a shorter execution time. HPSO parameters 
such as the number of iterations and particles can be optimized to produce better image 
quality 
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