Conferinta Tehnico-Stiintifica a Studentilor, Masteranzilor si Doctoranzilor, Universitatea Tehnica a Moldovei

DOMAIN SPECIFIC LANGUAGE FOR ACCOUNTING

Egor BABCINETCHI, Daniel POGOREVICI, Iulia TARUS, Rafaela CERLAT"

Department of Software Engineering and Automatics, FAF-202, Faculty of Computers, Informatics and
Microelectronics, Technical University of Moldova, Chisinau, Moldova

*Corresponding author: Rafaela Cerlat,

Abstract: This paper analyzes and describes the implementation of a Domain Specific Language
(DSL) in the accounting sector. These days entrepreneurs and business owners spend thousands of
euros a year on tax consultants. This DSL would allow users to establish new taxes and to do
calculations using real data very quickly with no additional cost.

Keywords: domain specific language, grammar, syntax, parser, lexer, taxes, accounting, finance

Introduction

A Domain Specific Language is a programming language with a higher level of abstraction
optimized for a specific class of problems. IT uses concepts and rules from the field or domain [1].

Domain-Specific Languages are used for different reasons and by different types of users.
Some DSLs are intended for programmers, and for that reason are more technical, while others are
targeted towards people with no experience in programming and therefore, they have less technical
concepts and syntax. DSLs are viewed as User Interfaces (Uls) because they bridge the gap between
the domain experts and the computation platforms.

Accounting is the process of recording financial transactions related to a business. This
process includes summarizing, analysing and reporting these transactions to inspection agencies,
regulators, and tax collection entities. The financial statements used in accounting are a concise
summary of financial transactions over a period, encapsulating a company's operations, financial
position, and cash flows.

Accounting may be handled by a bookkeeper or an accountant at a small firm, or by large
finance departments with dozens of employees at bigger companies. Because of the increasing market
and customer demands, the accounting and finance sector has to explore new ways and strategies to
cut back costs and improve efficiency. Thus, accounting automation would take the most manual
components of an accountant’s work day and perform them instantly [2].

This DSL would represent a financial model, an abstract representation of the real-world
financial situation, designed to illustrate a simplified version of a financial asset or portfolio of a
business, project, or any other investment.

Introduction in Financial Accounting

Financial statements are written records that contain the financial performance and business
activities of a company. Financial statements are often inspected by government agencies,
accountants and firms to ensure accuracy and for tax, financing, or investing purposes. These
statements include: balance sheet, income or cash flow statement.

A balance sheet shows what a company owns (its “assets) and owes (its “liabilities”) as of a
particular date, along with its shareholders’ equity.

Assets are divided into current assets, which can be converted to cash in one year or less, and
non-current or long-term assets, which cannot. A liability is any money that a company owes to
outside parties, from bills it has to pay to suppliers to interest on bonds issued to creditors to rent,
utilities and salaries [3].

Grammar
This DSL has a grammar defined by the 4-tuple G = {Vy, Vr, S, P}, where:
Vy - 1s a finite set of non-terminal variables;

Chisinau, Republica Moldova, 29-31 Martie 2022, Vol. I
-342 -

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Vr - is a finite set of terminal variables;
S - is the start variable (or start symbol);
P - is a finite set of production rules of the grammar.

Vy = {<program>, <declaration>, <classDecl>, <funcDecl>, <varDecl>, <statement>,
<finDecl>, <balanceSheet>, <incomeState>, <bal equity>, <bal assets>,

<bal liab>, <assets ex>, < liabilities_ex>, < equity_ex>, <bal sheet assets ex>,
<special identifer>, etc.}

Vr = {class, fun, of, for, Balance Sheet, Income Statement, SRL, Individual, assets,
liabilities, equity, if, print, return, while, and, not equal, true, false, cash,
expenses, inventory, accounts, long_term, accounts-liab, others, long-term-liab,

capital, retained, exportBalanceSheet, importBalanceSheet, =, >, >=, <, <=, -, +,
1, *,0.9, etc.}

P = { <program> — <declaration>
<declaration> - <classDecl>
<declaration> - <funcDecl>
<declaration> —» <varDecl>
<declaration> - <statement>
<declaration> = <finDecl>
<declaration> = <balanceSheet>
<declaration> = <incomeState>
<classDecl> — class <identifier> { }
<classDecl> — class <identifier> extends <identifier> { }
<classDecl> — class <identifier> extends <identifier> {<function> +}
<funDecl> — fun <function>
<finDecl> — <identifier> of <entities> {<function>*}
<balanceSheet> — Balance Sheet <identifier> for <identifier> { <function>* }
<balanceSheet> — Balance Sheet <identifier> for <identifier> {<balProps>*
<function>*}
<incomeState> — Income Statement <identifier> for <identifier> {
<function>*}
<balProps> — <bal equity> | <bal assets> | <bal liab>
<bal assets> — assets {<assets ex> +}
<bal assets> — assets <identifier> {<assets ex> +}
<bal liab> — liabilities {< liabilities ex> +}
<bal liab> — liabilities <identifier> {< liabilities ex> +}
<bal equity> — equity {< equity ex> +}
<bal_equity> — equity <identifier> {< equity ex> +}
<asset_ex> — <bal sheet assets ex>= <expression>
< liabilities_ex> — <bal sheet liabilities ex> = <expression>
<equity ex>— <bal sheet equity ex>= <expression>
<statement>— <exprStmt> | <forStmt> | <ifStmt> | <printStmt> | <returnStmt> |
<whileStmt> | <block>|<expression>
<exprStmt> — <expression>
<forStmt> — for ((<varDec> | <exprStmt> | ;) expression? ; expression?)
< statement>
<ifStmt> - if (<expression>) < statement>
<ifStmt> - if (<expression>) < statement> else <statement>
<printStmt> — print <expression>

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I
-343 -

Conferinta Tehnico-Stiintifica a Studentilor, Masteranzilor si Doctoranzilor, Universitatea Tehnica a Moldovei

<returnStmt> — return <expression>

<whileStmt > — while (<expression>) <statement>

<block> - { <declaration>* }

<expression> — <assignment>

<assignment> — <identifier> = <assignment> | <logic or >

<assignment> — <call> . <identifier> = <assignment> | <logic or>

<logic or> — <logic_and> (and <logic_and>)*

<logic and> — <equality> (and <equality>)*

<equality> - <comparison> ((not equal | == <comparison>)*

<comparison> = <term> ((> |>=|<|<=) <term>)*

<term> — <factor> ((- |+) <factor>)*

<factor> — <unary> ((/| *) <unary>)*

<unary> — (!]|-) <unary> | <call>

<call> — <primary> (()| . <identifier>)*

<call> — <primary> ((<arguments>) | . <identifier>)*

<primary> — true | false | null | this | <number> | <string> | <identifier> |
<special identifier> | (<expression>)

<function> — <identifier> () <block>

<function> — <identifier> (<identifier>) <block>

<parameters> — <identifier> (, <identifier>) *

<arguments> — <expression> (, <expression>)*

<identifier> - <letter> (<letter> | <digit>) *

<digit>—- 0]...|9

<letter> — [a-z ... A-Z]

<entities> — SRL | Individual

<bal sheet assets ex>— <bal sheet assets>

<bal sheet liab _ex> — <bal sheet liab>

<bal sheet equity ex>— <bal sheet equity>

<bal sheet assets> — cash | expenses | inventory | accounts | long_term

<bal _sheet liab> — accounts-liab | others | long-term-liab

<bal sheet equity> — capital | retained

<special_identifer> — exportBalanceSheet | importBalanceSheet

Lexer and Parser

Building a DSL consists of multiple stages. Lexical Analysis is the first step in the compiler
designing. Therefore, this DSL will need a lexer that takes the source code (a sequence of characters)
and converts it into a set of tokens. The lexer will contain a tokenizer, also called a scanner. In the
process of scanning, if it detects that a token is invalid, it generates an error message. So, the role of
the lexer would be to read the characters from the source code, check for valid tokens, and pass this
data to the next step-the syntax analyzer.

Syntax Analysis is the second step of this process, when the given input of tokens is checked
against the production rules and structure of the formal grammar. The parser would analyse the
structure of the input, check if it is the correct syntax for the DSL, and detect any errors.

Semantic analysis would be the task of ensuring that the statements and declarations of a
program are semantically correct, that their meaning is clear and consistent with the way in which
control structures and data types are supposed to be used.

The input for the code generator usually consists of an abstract syntax tree or a parse tree. This
tree is converted into a linear sequence of instructions, usually in an intermediate language such as
three-address code [4-6].

Chisinau, Republica Moldova, 29-31 Martie 2022, Vol. I
- 344 -

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

For this DSL the user would write programs by typing in commands. So, the DSL will require
the user to specify the type of fees, taxes or any other services he wants to be evaluated.

After building a parser and an interpreter for this domain specific language, the interpreter
would just calculate the values of any field for any entity and the amount of taxes for each entity
affected and print them on the screen. So, the output would be the calculated numbers and statistics.

The DSL will evaluate the code from the first line to last line, left to right, if there are no other
constraints such as loops or conditionals.

declaration:6 <EOF>

balanceSheet

qwik:-"Balance-Sheet" IDENTIFIER:-"B1" null:-"for" IDENTIFIER:-"SRR1" CURLY_LEFT:-"{" bal_assets CURLY_RIGHT:-"}"

null:-"assets" CURLY_LEFT:-"{" asset_ex asset_ex CURLY_RIGHT:-"}"

BAL_SHEET_ASSETS_EX:-"cash" nul:-"=" expression BAL_SHEET_ASSETS_EX:-"expenses" null-"=" expression

Figure 1. Parsing tree

Conclusions

In this paper the use of DSL in the financial field was analyzed. Such a tool could be used by
small companies, agencies, start-ups and business managers with no specific knowledge of
accounting, because it would use domain-relevant abstractions and notations.

Automating a range of accounting and financial operations will result in smoother operations,
saved time and an overall better work-flow. In other words, the presented DSL would bring greater
opportunities for the accounting sector, because it would reduce the complicated, time and money
consuming work, as well as allow those interested in accounting and finance to focus more on value
and results.

References:

1. Domain-Specific Languages. [online] [visited 28.02.2022]. Available:
https://www.jetbrains.com/mps/concepts/domain-specific-languages/

2. Jason FERNANDO, Guide to Accounting. [online] [visited 28.02.2022]. Available:
https://www.investopedia.com/terms/a/accounting.asp.

3. Chris B. MURPHY, Corporate Finance & Accounting. Financial Statements. [online] [visited
28.02.2022]. Available: https://www.investopedia.com/terms/f/financial-statements.asp.

4, Robert NYSTROM, Crafting Interpreters, 2021. [online] [visited 28.02.2022]. Available:
https://craftinginterpreters.com.

5. Mirian HALFELD-FERRARI, Compilers. Lexical Analysis. [online] [visited 28.02.2022]. Available:
https://www.univ-orleans.fr/lifo/Members/Mirian.Halfeld

6. John SMITH, Lexical Analysis (Analyzer) in Compiler Design. [online] [visited 28.02.2022].
Available: https://www.guru99.com/compiler-design-lexical-analysis.html.

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I
- 345 -

