
Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 317 -

MARGAY - GENERAL PURPOSE LANGUAGE DEVELOPMENT

Valeria DUBINA*, Ilie TODIRAȘCU, Maria-Madalina UNGUREANU,
Marcel VLASENCO

Department of Software Engineering and Automatics, FAF-203, Faculty of Computers, Informatics and

Microelectronics, Technical University of Moldova, Chișinău, Republic of Moldova

*Corresponding author: Valeria Dubina, valeria.dubina@isa.utm.md

Abstract. This work was created in the context of a Problem Based Learning (PBL) project, the main
purpose of which was the analysis of compilers, interpreters and programming languages and further
developement of a General Purpose Language (GPL) called Margay in Go Programming Language.

Key words: General Purpose Language (GPL), Abstract Syntax Tree Interpreter, Go, Grammar

 Introduction
 Like all good inventions, programming languages were born out of people's desires and need
to make their lives easier. After moving from manual labour to electrical signals, the rewiring needed
to get the computer to perform a task turned out to be a hassle, so an assembly language that allows
programmers to pass instructions directly to the CPU was invented.

Such impressive achievements were possible only thanks to the contributions of the best
engineers of the last centuries. They found a more efficient ways to communicate with computer
hardware and extended the practical applications of Programming Languages and – Compilers and
Interpreters [1].

By gaining technical insights through the implementation of a general-purpose language, the
aim of this article is to form a solid understanding of the underlying principles behind the inner
workings of the programming languages and interpreters. The focus is on how the tools used by
developers came to be and why. The intention is to acquire a much stronger understanding of the
computer science fundamentals and how they can be applied for creating new ground-breaking
innovations.

Language overview
For Margay Abstract Syntax Tree Interpreter – Go [2] programming language is used as

intermediate language that will execute the program written in .margay file or directly in command
line. This language was chosen for its infrastructure. Docker, Kubernetes, and Prometheus are some
of Go's most commonly developed infrastructures.

The phases of interpreting the margay source code will chase the following steps:
- Reconstruction of the code into an abstract syntax tree (AST)
- Program execution according to the AST tree.
- Each sentence is analysed one at a time
Each value encountered in the interpretation process is wrapped in a structure that meets this

particular type of object interface: Integer, String, Boolean, Float, Null, Array and Functions, If-Else
loop, For loop.

There are several data types in Margay – number (integer or float), boolean, string, however,
all types are not explicitly specified. In Margay arrays are also present, but all of them are one
dimensional and accept all existing data type including functions. Declaration of an array is similar
to variable declaration and the specification of array components are denoted in square brackets after
the “=” character and are separate by a comma.

Assignment is permitted for all types, as it is shown in the grammar below:
- boolean: <boolean literal> → true | false
- integer: <integer literal> → <integer>

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 318 -

- float: <float literal> → <float>
- string: <string literal> → “<text>”

Functions invocation includes:
- passing argument values;
- performing the function’s content;
- returning, with a possible outcome, to the main.

Some of the control structures implemented are:
- If/else:
This type of the if statement is a common one regarding the semantics. The first step represents

the evaluation of the <expression>. In the case when the result of the evaluation is true, is executed
the true section of this control structured function. In the other case, when the result doesn’t
correspond to the initial condition and is false then the else section is executed, if it has been set. To
prevent ambiguity when matching an else section with its if statement, the Margay mandates that true
and else parts be contained in braces.

- For:
The for statement acts as while loop with the exact same functionality. It loops through a block

of code while some conditions are true. To prevent overflow, it is mandatory to increment (or
decrement) the value of condition statement.

Basic computational model supported by the language are:
- Addition: Symbol: “+” Variable types: integer, float, string. Exceptions: When one of the

input variables is of type string - the concatenation operation will be executed
- Subtraction Symbol: “- “Variable types: integer, float
- Multiplication Symbol: “*” Variable types: integer, float
- Division Symbol:” /” Variable types: integer, float
Supplementary computational functionalities as square-root, raise to a power, factorial etc.

would be implemented as an additional library to the GPL, developed using those basic operations
that would be already defended in GPL.

Some of the comparison operation include: >, =, <=, ==, and != . This operation will output
true or false depending of the given values. Their behaviour is similar to other programming language
with no change.

Logical operation such as and with key element “&&”, or with key “||”, not with key element
“!” are also implemented. This logical operation follows the principles of programming languages
and act accordingly.

Reference Grammar:
Meta notation:

< > - nonterminal param;
bold – terminal param;
| - separates alternatives;

G(L) = {Vn, Vt, S, P}, where Vn -nonterminal symbols, Vt – terminal symbols, S- starting symbol and
P – finite set of production rules.

Vn = {<program>, <statement>, <return statement>, <expression statement>, <expression>, <prefix
expression>, <infix expression>, <if expression>, <for expression>, <identifier>, <literal>,
<function>, <function call>, <array>, <array call>, <map>, <map call > , <map element>, <prefix
operator>, <infix operator>, <assignment operator>, <parameter>, <argument>, <array element>,
<integer literal>, <letter>,<string literal>, <boolean literal> ,<float literal>, <digit>,
<text>,<character>,<symbol> }

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 319 -

Vt = { ; , “,” , return, if, else, for, fn, true, false, +, -, /, *, == , != , > , <, >= , <=, || , &&, =, 0…9,
a…z, A…Z, ! , @ , # ,$, %, ., {,}, (,), [,] }
S = {<program>}

P = {
<program> → <statement> ; | <statement> ; <program>
<statement> → <return statement> | <expression statement>
<return statement> → return <expression>
<expression statement> → <expression>
<expression> → <prefix expression> | <infix expression> | <if expression> | <for expression> |
<identifier> | <literal> | <function> | <function call> | <array> | <array call> | <map> | <map call>
<prefix expression> → <prefix operator> <expression>
<infix expression> → <expression> <infix operator> <expression> | <identifier> <assignment
operator> <expression>
<if expression> → if (<expression>) { <program> } | if (<expression>) { <program> } else {
<program> }
<for expression> → for (<expression>) { <program> }
<function> → fn(<parameter>) { <program> }
<parameter> → ε | <identifier> | <identifier> , <parameter>
<function call> → <identifier>(<argument>)
<argument> → ε | <expression> | <expression> , <argument>
<array> → [<array element>]
<array element> → ε | <expression> | <expression> , <array element>
<array call> → <identifier>[<integer literal>]
<map> → { <map element> }
<map element> → ε | <literal> : <expression> | <literal> : <expression> , <map element>
<map call> → <identifier>[<literal>]
<identifier> → <letter> <identifier>
<infix operator> → + | - | / | * | == | != | > | < | >= | <= | || | &&
<prefix operator> → - | !
<assignment operator> → =
<literal> → <string literal> | < boolean literal> | <integer literal> | <float literal>
<boolean literal> → true | false
<integer literal> → <integer>
<float literal> → <float>
<string literal> → “<text>”
<integer> → <digit> | <digit><integer>
<float> → <integer>.<integer>
<text> → ε | <character> | <character><text>
<character> → <letter> | <symbol> | <digit>
<digit> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<letter> → a | A | b | B | ... | z | Z
<symbol> → ! | @ | # | $ | % | ...
}

Input and Output
In order for the Abstract Syntax Tree Interpreter to execute the program written in Margay -

it is needed for the code to be written in a file with .margay extension, or the code can be written
directly in command line.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 320 -

The straight output of a specific .margay file will be displayed in command line. Due to the
fact that Margay is an interpreted language, an executable file will not be provided, because these
types of files are specific to compiled programming languages such as C or C++.

Conclusion
To sum up, this article presents an overview on the process of designing Margay general

purpose language, the main logic of it and the intended grammar. One of the main goals of the article
is to make a much stronger understanding of the computer science fundamentals by avoiding to step
of a learning curve and focusing on how programming tools came to be. The intended language is not
a strict one, it provides the developer the freedom of decision-making, but the familiar syntax of other
high programming language will be kept in order to make it simple for beginners in this field.

References:

1. RAKIA BEN SASSI Compiler vs. Interpreter: Know The Difference And When To Use Each Of Them
[online], 19.01.2021, [cite: 25.02.2022]
Available: https://betterprogramming.pub/compiler-vs-interpreter-d0a12ca1c1b6

2. THORSTEN BALL Writing an INTERPRETER in go. Germany: Thorsten Ball, 2018.

