
Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 285 -

DOMAIN SPECIFIC LANGUAGE FOR COMPOSING MUSIC

Ion CERNEI*, Elena PAPUC, Dina BÎTCĂ, Cezar GUZUN

Department of Software Engineering and Authomation, Group FAF-201, Faculty of Computers, Informatics and
microelectronics, Technical University of Moldova, Chișinău, Republic of Moldova

*Corresponding author: Ion Cernei, ion.cernei@isa.utm.md

Abstract: The aim of the following article is to describe the way composing music could benefit from
a Domain Specific Language. It presents some music concepts and their representation using
programing archetypes. Further, it explains the way the DSL works by describing it’s basic
commands, an example of code and parse tree.

Key words: music language, domain-specific language, data structures, parse tree, grammar.

 Introduction

A domain-specific language (DSL) is a computer language specialized to a particular
application domain [1]. In this case the domain for the DSL is music composition, therefore most of
the attention was given to computer generated sound, time management, and measurement.

Computers are general-purpose machines that can be programmed for different goals in a
variety of fields, including general art and music. Computer music languages allow composers who
do not have knowledge in programming, to still use computers to their advantage. Even though
general-purpose programming languages can be used for composing music, experience has shown
that time is a crucial aspect for this task, therefore, languages that incorporate musical time are easier
to use and perform better with many musical operations. In procedural languages time can be
represented with tempo, duration, abstractions of beats and schedulers [2].

The proposed language should be able to solve two problems:
1. Improving the process of learning programming by using live coding.
2. User empowerment in digital music making and the potential disruption to canonic

practices of music education by the utilisation of digital technologies.
The proposed DSL is a simple and powerful way to start making electronic music and also to

learn basic programming concepts.

Syntax
The term syntax, in general, refers to the notations and rules that control the structure of the

programming language. The majority of computer music languages are based on text and keep the
syntax similar to other programming languages. The described DSL has a simple syntax with terms
as: play, sleep, for each, repeat, function, use.

When developind a DSL, the syntax can be text-based or graphical, but the main attention
must be directed to how the music language handles timing, signals and concurrency. It can be
observed that how the program behaves, it’s semantics are of graeater importance than the syntax.

Semantics and language overview
The term semantics, in general, means how the programming language interprets the text.

Music composition by using programming needs to include parallel processing, manually timed
output, signal processing and the capability to respond to changes of the code in real-time. Therefore,
innovative and interesting semantics can be found in DSLs for composing music. Programming
languages for music include special data types such as signals and scores, clear specifications for
timing manipulation of program behaviour and provisions for real-time interaction [2].

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 286 -

To create sound, the user will have the PLAY command, followed by a number which
represents the pitch of the note. The SLEEP command is meant to make a timed pause between notes.
After these two main commands there are those that allow the user more flexibility and less code such
as REPEAT and FOR EACH commands. The USE command allows to choose or switch musical
instruments.

To manipulate data, the user will be able to create variables and functions. There are three
main reasons for using variables: communicating meaning, managing repetition and capturing the
results of things.

One of the basic data structures that the DSL will have, which is very useful, is the list. A list
can be declared by writing the terms within a pair of brackets, in form of a sequence where each
element is separated by commas and spaces. For example [25, 30, 35].

Grammar design
For a better understanding of the grammar, special notations were used which are represented

in Tab. 1.
Table 1.

Meta notations
Notations Meaning

<text> a nonterminal parameter is written between < >
text a terminal parameter is written in bold
text* the symbol appears zero or more times
text+ the symbol appears one or more times

| an alternative follows

There are several stages that need to be covered in order to desgn a DSL. The first stage is
definition of the grammar L(G) = (VT, VN, S, P):

- VT – is a finite set of characters of the Alphabet of the Grammar (terminal symbols)
- VN – is a finite set of non-terminal symbols;
- S – is the start symbol;
- P – is a finite set of rules that combined form the production;

VT = { FUNCTION, DO, PLAY, SLEEP, REPEAT, TIMES, USE, FOR, EACH, IN, END, A,
B, ... Z , a, b, ... z, 0, 1, ... 9, piano, guitar, trumpet, drums, violin, =, ., ,, [,] }

VN = { <program>, <listOfCommands>, <basicCommands>, <initializationCommands>,
<playCommand>, <sleepCommand>, <useCommand> , <repeatCommand>,
<forEachCommand>, <functionCallCommand>, <naturalValue>, <floatValue>,
<instrument>, <Time>, <variableName>, <listName>, <initializeFunction>,
<initializeVariable>, <value>, <naturalList>, <floatList>, <functionName>,
<functionBody>, <lowerCase>, <upperCase>, <digit> }

S = {<program>}
P = {
 <program> → <listOfCommands>
 <listOfCommands> → <basicCommands>+
 | <initializationCommands>+
 | <basicCommands> <listOfCommands>
 | <initializationCommands> <listOfCommands>
 <basicCommands> → <playCommand>
 | <sleepCommand>
 | <useCommand>
 | <repeatCommand>
 | <forEachCommand>
 | <functionCallCommand>

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 287 -

 <playCommand> → PLAY <naturalValue>
| PLAY <variableName>
| PLAY <functionName>
| <playCommand> <basicCommands>

 <sleepCommand> → SLEEP <time>
 | SLEEP <variableName>
 | <sleepCommand><basicCommands>
 | <sleepCommand><listOfCommands>
 <time> → <floatValue>
 <floatValue> → <naturalValue> . <naturalValue>
 | <naturalValue>
 <useCommand> → USE <instrument>
 | <useCommand><basicCommands>
 <repeatCommand> → REPEAT <naturalValue> TIMES <basicCommands> END
 | <repeatCommand><basicCommands>
 <forEachCommand> →
 FOR EACH <variableName> IN <listName> DO <basicCommands> END
 | <forEachCommand><basicCommands>
 <functionCallCommand> → <functionName>
 | <functionCallCommand> <basicCommands>
 <initializationCommands> → <initializeFunction>
 | <initializeVariable>
 <initializeVariable> → <variableName> = <value>
 <value> → <naturalValue>

| <floatValue>
| [<naturalList>]
| [<floatList>]

 <naturalList> → <naturalValue> , <naturalList>
| <naturalValue>

 <floatList> → <floatValue> , <floatList>
 | <floatValue>
 <initializeFunction> → FUNCTION <functionName> DO <functionBody> END
 <functionBody> → <basicCommands>
 < naturalValue > → <digit>+
 <variableName> → <lowerCase>+ | <upperCase>+ | _+ | <digit>+
 <functionName> → <lowerCase>+ | <upperCase>+ | _+ | <digit>+
 <listName> → <lowerCase>+ | <upperCase>+ | _+ | <digit>+

 <lowerCase> → a | ... | z
 <upperCase> → A | ... | Z
 <digit> → 0 | ... | 9
 <instrument> → piano | guitar| violin | drums
 }

Code example
 The following code shows an example of function and variable declaration, also play, sleep,
for each, and repeat commands.

function simpleNote do:
 play 50
 sleep 0.5
end

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 288 -

notes = [50, 60, 80]
use piano
for each note in notes do
 play note
 sleep 0.5
end
use violin
repeat 3 times:
 simpleNote
end

Parse Tree
In Fig. 1 it is represented the Parsing Tree of the code from above. The first branch shows

the function initialization command and the second branch shows other basic commands.

Figure 1. Parse Tree

Conclusions
Domain-specific languages for music are formed by techniques and ideas that can recreate the

original prcess of music composition and make it simpler. The difference between Music DSLs and
other languages is that they must deal with the concept of time, simultaneous processes, and audio
signals. These concepts are naturally understood by humans when it comes to composing music
traditionally, but they can be hard to elaborate in conventional programming languages. Since
composing music is a process more bound to creativity than to engineering rules, it is important for
languages to provide a way for quick experimentation, therefore the syntax and semantics should be
adapted for this as well.

References

1. PARSONS, REBECCA. Domain Specific Languages, In Google Scholar, 2019, pp. 89-94.
2. DANNENBERG, RB. Languages for Computer Music, In Google Scholar, 2018, pp. 2-11.
3. JOSEPH A. GOGUEN. Semantics of computation, Lecture Notes in Computer Science, Vol. 25,

Springer, 1975, pp. 151–163

