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Abstract. This paper reports on the theoretical end experimental investigation of the output 
characteristics of a multisection master-oscillator power-amplifier (MOPA). It consists of a 
master oscillator (MO) composed by a gain section surrounded by two DBR sections 
monolithically integrated with a power amplifier (PA). We use a traveling wave equation 
model to calculate the optical output power in dependence on the current injected into the 
PA. The experimental results can be well explained with our theoretical analysis. For a finite 
front facet reflectivity of the PA the system is acting as a compound cavity. 

Keywords: distributed Bragg reflector laser, DBR, master oscillator power amplifier, MOPA, 
feedback. 

Rezumat. Articolul prezintă rezultatele finale ale investigației teoretice și experimentale a 
caracteristicilor de ieșire ale unui amplificator de putere master-oscilator multisecțional 
(MOPA). Amplificatorul este format dintr-un oscilator master (MO) compus dintr-o secțiune 
de câștig înconjurată de două secțiuni DBR integrate monolitic cu un amplificator de putere 
(PA). Este aplicat un model de ecuație a undelor de călătorie pentru a calcula puterea optică 
de ieșire în funcție de curentul injectat în PA. Rezultatele experimentale pot fi bine explicate 
prin analiza teoretică. Pentru o reflectivitate finită a fațetei frontale a PA, sistemul acționează 
ca o cavitate compusă. 

Cuvinte cheie: laser reflector Bragg distribuit, DBR, amplificator de putere master oscilator, MOPA, 
feedback. 

Introduction 
Over the last years, master oscillator power amplifiers have been requested by several 

applications such as LIDAR, free space optical communications, and spectroscopy. These 
applications need spatially diffraction limited and spectral narrow-band emission at several 
hundreds of milliwatts or even watts output power [1-4]. A monolithically integrated master 
oscillator power amplifier at 1.5 μm is presented in [2]. The three-section device includes a 
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distributed feedback (DFB) laser, a modulation section, and a high power tapered amplifier. 
In order to mitigate the coupling effects of the light reflected at the facets, the device has 
been designed with a bent cavity axis and a tilted waveguide at the front facet. Such devices 
emit more than 400 mW output power. The dynamical behavior of a 1.5-µm DFB tapered 
MOPA was reported in [3]. Three different emission regimes such as stable amplified DFB 
laser emission with wavelength jumps when sweeping the injection currents, multimode 
Fabry–Perot (FP) operation of the complete MOPA cavity, and self-pulsing operation at 
frequencies between 5 and 8 GHz were observed. In Ref. [4] the physical origins of these 
phenomena were investigated in the framework of a time-dependent travelling wave (TW) 
model which phenomenologically incorporates thermal effects via self and cross-heating of 
the different sections of the device similarly as proposed in [5] for the first time. 

This paper is concerned with numerical and experimental investigations of a 
multisection monolithically integrated distributed Bragg reflector (DBR) MOPA emitting at 
1120 nm using a TW model [5-8]. We report the output characteristics of such device varying 
the front facet reflectivity. In Section 2 we introduce the device under study and the 
theoretical model. Section 3 presents experimental and numerical results. Finally, 
conclusions are given in Section 4.  

Laser structure and equations 
A schematic representation of the multisection DBR MOPA device is shown in Figure 1. 

The MO consists of three sections. The gain section G having a length of 0.5 mm is 
complimented by 1 mm and 0.5 mm long DBR sections on left- and right-hand sides, 
respectively. The MO is connected to the 4 mm power amplifier PA. The reflectivity R at the 
front facet for the PA is varied from 0 to 10-1. The entire length of the device is 6 mm, and 
the emission wavelength is 1120 nm. The width of the ridge providing lateral fundamental 
mode operation is 4 µm. Electrical currents are injected into the gain section (IMO) and the 
power amplifier (IPA). The investigated structure is like to the one reported in [9]. The layer 
structure was grown by metalorganic vapor phase epitaxy. The active layer is formed by an 
InGaAs double quantum well which is embedded asymmetrically into a 4.8 μm thick vertical 
waveguide core [10, 11]. 

Figure 1. Setup of multisection DBR MOPA. The current injected into the MO is fixed. The 
current injected into the PA and the front facet reflectivity of the PA are varied.

The laser dynamics is analyzed using traveling wave equations for the slowly varying 
complex amplitudes E+(z,t) and E-(z,t) of the counter-propagating optical fields within each 
section of the device [7, 8] incorporated in [12] 
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where c0 is the vacuum light speed and κ is the field coupling coefficient due to the Bragg 
grating. We also use the rate equation for carrier density: 
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where d and W are the thickness and width, respectively, of the active region. The relative 
propagation factor, the modal peak gain, and the change of the modal index with carrier 
density are given by following expressions  
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The values of main laser parameters used in our simulations are collected in Table 1. For a 
detailed description of the remaining model equations and parameters, we refer to [6-8]. 

Table 1 
Symbol Description Unit Value 

λ0 reference wavelength m 1.12 ‧10-6 

LG length of active section m 0.5 ‧10-3 

LDBR1 length of DBR section m 1.0 ‧10-3 

LDBR2
 length of DBR section m 0.5 ‧10-3 

LPA length of PA section m 4.0 ‧10-3 

Rr 
rear facet intensity 
reflectivity 

0 

Rf 
front facet intensity 
reflectivity 

0‧‧‧0.1 

ng group refractive index 3.6 
κ coupling coefficient m-1 10 ‧102 

αH 
linewidth enhancement 
factor 

-0,8

α0 internal absorption m-1 3 ‧102 
Γ optical confinement factor 0.68 ‧10-2 

g’ differential gain m2 2555 ‧10-22 

ᵋg gain compression factor m3 1 ‧10-24 

Ntr transparency carrier density m-1 1.5 ‧10-24 

d thickness of active layer m 10 ‧10-9 

W width of active layer m 4 ‧10-6 
A recombination parameter s-1 3.4 ‧10-9 
B recombination parameter m3s-1 1.5 ‧10-16 
C recombination parameter m6s-1 5 ‧10-42 

U’F 
derivative of Fermi level 
separation 

V  m3 0.03 ‧10-24 
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Results and discussions 
In what follows we discuss the output characteristics of the multisection device shown 

in Figure 1. We use the equations (1)-(2) and parameters listed in Table 1 for numerical 
calculations. The experiment was done at room temperature. Figure 2 illustrates both 
numerical and experimental output power versus injected current into PA characteristics for 
a fixed current of 200 mA injected into MO. 

Figure 2. Dependence of output power on current injected into power amplifier PA: red – 
numerics, black – experiment. The current injected into the MO is 200 mA. The front 

facet reflectivity R =0. 

From the characteristics a threshold of 0.15 A, and a slope of 0.6 W/A can be 
determined. The experimental investigations were performed at room temperature [9]. This 
figure indicated a good agreement between numerical calculations and experimental results. 
We next examine the same dependence as in Figure 2 what happens if the front facet 
reflectivity in increased to 10-2. Figure 3a shows the measured characteristics. As mentioned 
before, for zero reflectivity the threshold current is 0.16 A. On the other hand, an increase of 
front facet reflectivity reduces the threshold current to 0.09 A (red curve in Figure 3a). One 
can observe an increase of the slope to 0.78 W/A. This is due to the fact that for a finite front 
facet reflectivity the system acts as compound cavity. However, for high currents one observes 
undulations of the output power with injected current. 

Figure 3. Output power versus injection current injected into the PA for two front facet 
reflectivities. The current injected into the MO is fixed to 200 mA: a) experiment, 

b) numerics.
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Usually, this region with undulations is characterized by instabilities, which are not 
the subject of present investigations. The right panel of Figure 3 shows the numerically 
obtained results. We observe a good agreement between experiment and numerics regarding 
the decrease of the threshold current (0.05 A), However the slope (0.60 W/A) remains only 
constant in the simulation. In what follows, we show in Figure 4 how the front facet 
reflectivity affects the output power. An increase of the reflectivity from zero (black line) to 
10-3 (red line) leads to a parallel shift of the characteristics to lower currents keeping the
slope efficiency almost unaffected. A further increase of the front facet reflectivity to 10-1

remains the threshold current almost unchanged (Ith= 0.05 A) but reduces the slope to a value
of 0.42 W/A due to a reduction of the outcoupled power.

Figure 4. Simulated power–current characteristics for different front facet reflectivities. 

Conclusions 
We have carried out experimental and theoretical investigations of the output 

characteristics of multisection master-oscillator power-amplifier. The MO is designed to be 
composed of a gain section and two DBR sections. Both simulations and experiment show a 
good quantitative agreement between output laser characteristics for zero front facet 
reflectivity. When the front facet reflectivity is increased the MOPA works as a compound 
cavity. We believe that our work provides a good basis for future study and provides some 
hints for more detailed investigations of mechanisms behind the MOPA effects. 
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