Bull. Aust. Math. Soc. **86** (2012), 266–281 doi:10.1017/S000497271100308X

GENERALIZED HIGHER DERIVATIONS

E. P. COJUHARI[™] and B. J. GARDNER

(Received 13 October 2011)

Abstract

A type of generalized higher derivation consisting of a collection of self-mappings of a ring associated with a monoid, and here called a *D-structure*, is studied. Such structures were previously used to define various kinds of 'skew' or 'twisted' monoid rings. We show how certain gradings by monoids define *D*-structures. The monoid ring defined by such a structure corresponding to a group-grading is the variant of the group ring introduced by Năstăsescu, while in the case of a cyclic group of order two, the form of the *D*-structure itself yields some gradability criteria of Bakhturin and Parmenter. A partial description is obtained of the *D*-structures associated with infinite cyclic monoids.

2010 *Mathematics subject classification*: primary 13N15, 16S36, 16A03; secondary 16W55. *Keywords and phrases*: derivation, higher derivation, graded ring, monoid algebra.

1. Introduction

All rings considered are associative with identity, and ring homomorphisms preserve identities.

A higher derivation of rank *m* (respectively, of infinite rank) on a ring *R* is a sequence d_0, d_1, \ldots, d_m (respectively, d_0, d_1, d_2, \ldots) of additive endomorphisms of *R* such that $d_n(ab) = \sum_{i+j=n} d_i(a)d_j(b)$ for each relevant *n* and for all $a, b \in R$. The defining condition ensures that in both cases d_0 is an endomorphism and d_1 is a (d_0, d_0) -derivation (whence a derivation when d_0 is the identity map). This concept is quite well established and seems to have been introduced (for fields) by Hasse and Schmidt [4]. Higher derivations are closely related to homomorphisms from *R* to $R[X]/(X^m)$ (in the rank-*m* case) and to R[[X]] (in the infinite-rank case) and (at least when d_0 is the identity) the d_i can be described in terms of derivations [1, 5, 6].

In [3] the first author introduced what we claim is a generalization of higher derivations. We first recall the definition and then give a justification for the claim.

Let *G* be a monoid with identity *e*, *R* a ring with identity 1, and for each *x*, *y* \in *G* let $\sigma_{x,y}$: $R \rightarrow R$ be a function. We require the set of $\sigma_{x,y}$ to satisfy the following condition, where *x*, *y*, *z* are arbitrary elements of *G* and *a*, *b* of *R*.

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

CONDITION A.

[2]

- (0)For each $x \in G$ and $a \in R$, we have $\sigma_{x,y}(a) = 0$ for almost all $y \in G$.
- (i) Each $\sigma_{x,y}$ is an additive endomorphism.
- (ii) $\sigma_{x,y}(ab) = \sum_{z \in G} \sigma_{x,z}(a) \sigma_{z,y}(b).$
- (iii) $\sigma_{xy,z} = \sum_{uv=z} \sigma_{x,u} \circ \sigma_{y,v}$. (iv₁) $\sigma_{x,y}(1) = 0$ if $x \neq y$.
- (iv₂) $\sigma_{x,x}(1) = 1$.
- (iv₃) $\sigma_{e,x}(a) = 0$ if $x \neq e$.
- (iv₄) $\sigma_{e,e}(a) = a$.

DEFINITION 1.1. A collection of functions $\sigma_{x,y}$ satisfying Condition A is called a Dstructure.

Condition A(iii) obviously has at least a superficial similarity to the defining condition for a higher derivation, but a closer examination reveals a more significant connection. Let d_0, d_1, d_2, \ldots be a higher derivation of infinite rank in which for convenience we take d_0 to be the identity function. We make use of the additive monoid N. For $x, y \in \mathbb{N}$ let $\sigma_{x,y} = (x!/y!)d_{x-y}$ for $x \ge y$ and the zero function for x < y. We show that the $\sigma_{x,y}$ satisfy most of Condition A.

Clearly (i) is satisfied. If $x \ge y \in \mathbb{Z}^+$ and $a, b \in R$, then

$$\sigma_{x,y}(ab) = \frac{x!}{y!} d_{x-y}(ab) = \frac{x!}{y!} \sum_{t=0}^{x-y} d_{x-y-t}(a) d_t(b) = \frac{x!}{y!} \sum_{y \le z \le x} d_{x-z}(a) d_{z-y}(b)$$
$$= \sum_{y \le z \le x} \frac{x!}{z!} d_{x-z}(a) \frac{z!}{y!} d_{z-y}(b) = \sum_{y \le z \le x} \sigma_{x,z}(a) \sigma_{z,y}(b),$$

while for x < y everything is zero, so we have (ii). It is easy to prove by induction that $d_n(1) = 0$ for all $n \ge 1$ so (recalling that d_0 is the identity) for x > y we have $\sigma_{x,y}(1) = (x!/y!)d_{x-y}(1) = 0$ while $\sigma_{x,x}(1) = (x!/x!)d_0(1) = 1$, whence (iv₁) and (iv₂) hold. Observing that $\sigma_{0,x}$ is zero for all x > 0 and $\sigma_{0,0} = d_0$, we see that the rest of (iv) is valid too.

What about (iii)? A higher derivation d_0, d_1, d_2, \ldots is *iterative* [4] if $d_i \circ d_j =$ $\binom{i+j}{i}d_{i+j}$ for each *i*, *j*. If (iii) is satisfied then, in particular,

$$(i+j)!d_{i+j} = \frac{(i+j)!}{0!}d_{i+j} = \sigma_{i+j,0} = \sigma_{i,0} \circ \sigma_{j,0} = i!d_i \circ j!d_j,$$

$$d_i \circ d_i = \frac{(i+j)!}{0!} = \binom{(i+j)!}{0!}d_i$$

so

$$d_i \circ d_j = \frac{(i+j)!}{i!j!} = \binom{i+j}{i} d_{i+j}$$

and thus the higher derivation is iterative. Conversely, if the higher derivation is iterative, then for each x, y, z we have

$$\sum_{u+v=z} \sigma_{x,u} \circ \sigma_{y,v} = \sum_{u+v=z} \frac{x!}{u!} d_{x-u} \frac{y!}{v!} d_{y-v}$$
$$= \sum_{u+v=z} \frac{x!}{u!} \frac{y!}{v!} \binom{x-u+y-v}{x-u} d_{x-u+y-v}$$