GENERALIZED HIGHER DERIVATIONS

E. P. COJUHARI ${ }^{\boxtimes}$ and B. J. GARDNER

(Received 13 October 2011)

Abstract

A type of generalized higher derivation consisting of a collection of self-mappings of a ring associated with a monoid, and here called a D-structure, is studied. Such structures were previously used to define various kinds of 'skew' or 'twisted' monoid rings. We show how certain gradings by monoids define D-structures. The monoid ring defined by such a structure corresponding to a group-grading is the variant of the group ring introduced by Năstăsescu, while in the case of a cyclic group of order two, the form of the D-structure itself yields some gradability criteria of Bakhturin and Parmenter. A partial description is obtained of the D-structures associated with infinite cyclic monoids.

2010 Mathematics subject classification: primary 13N15, 16S36, 16A03; secondary 16W55.
Keywords and phrases: derivation, higher derivation, graded ring, monoid algebra.

1. Introduction

All rings considered are associative with identity, and ring homomorphisms preserve identities.

A higher derivation of rank m (respectively, of infinite rank) on a ring R is a sequence $d_{0}, d_{1}, \ldots, d_{m}$ (respectively, $d_{0}, d_{1}, d_{2}, \ldots$) of additive endomorphisms of R such that $d_{n}(a b)=\sum_{i+j=n} d_{i}(a) d_{j}(b)$ for each relevant n and for all $a, b \in R$. The defining condition ensures that in both cases d_{0} is an endomorphism and d_{1} is a (d_{0}, d_{0})-derivation (whence a derivation when d_{0} is the identity map). This concept is quite well established and seems to have been introduced (for fields) by Hasse and Schmidt [4]. Higher derivations are closely related to homomorphisms from R to $R[X] /\left(X^{m}\right)$ (in the rank- m case) and to $R[[X]]$ (in the infinite-rank case) and (at least when d_{0} is the identity) the d_{i} can be described in terms of derivations [1, 5, 6].

In [3] the first author introduced what we claim is a generalization of higher derivations. We first recall the definition and then give a justification for the claim.

Let G be a monoid with identity e, R a ring with identity 1 , and for each $x, y \in G$ let $\sigma_{x, y}: R \rightarrow R$ be a function. We require the set of $\sigma_{x, y}$ to satisfy the following condition, where x, y, z are arbitrary elements of G and a, b of R.

[^0]
Condition A.

(0) For each $x \in G$ and $a \in R$, we have $\sigma_{x, y}(a)=0$ for almost all $y \in G$.
(i) Each $\sigma_{x, y}$ is an additive endomorphism.
(ii) $\sigma_{x, y}(a b)=\sum_{z \in G} \sigma_{x, z}(a) \sigma_{z, y}(b)$.
(iii) $\sigma_{x y, z}=\sum_{u v=z} \sigma_{x, u} \circ \sigma_{y, v}$.
(iv $\left.{ }_{1}\right) \sigma_{x, y}(1)=0$ if $x \neq y$.
$\left(\mathrm{iv}_{2}\right) \sigma_{x, x}(1)=1$.
$\left(\mathrm{iv}_{3}\right) \sigma_{e, x}(a)=0$ if $x \neq e$.
$\left(\mathrm{iv}_{4}\right) \sigma_{e, e}(a)=a$.
Defintition 1.1. A collection of functions $\sigma_{x, y}$ satisfying Condition A is called a D structure.

Condition A(iii) obviously has at least a superficial similarity to the defining condition for a higher derivation, but a closer examination reveals a more significant connection. Let $d_{0}, d_{1}, d_{2}, \ldots$ be a higher derivation of infinite rank in which for convenience we take d_{0} to be the identity function. We make use of the additive monoid \mathbb{N}. For $x, y \in \mathbb{N}$ let $\sigma_{x, y}=(x!/ y!) d_{x-y}$ for $x \geq y$ and the zero function for $x<y$. We show that the $\sigma_{x, y}$ satisfy most of Condition A.

Clearly (i) is satisfied. If $x \geq y \in \mathbb{Z}^{+}$and $a, b \in R$, then

$$
\begin{aligned}
\sigma_{x, y}(a b) & =\frac{x!}{y!} d_{x-y}(a b)=\frac{x!}{y!} \sum_{t=0}^{x-y} d_{x-y-t}(a) d_{t}(b)=\frac{x!}{y!} \sum_{y \leq z \leq x} d_{x-z}(a) d_{z-y}(b) \\
& =\sum_{y \leq z \leq x} \frac{x!}{z!} d_{x-z}(a) \frac{z!}{y!} d_{z-y}(b)=\sum_{y \leq z \leq x} \sigma_{x, z}(a) \sigma_{z, y}(b)
\end{aligned}
$$

while for $x<y$ everything is zero, so we have (ii). It is easy to prove by induction that $d_{n}(1)=0$ for all $n \geq 1$ so (recalling that d_{0} is the identity) for $x>y$ we have $\sigma_{x, y}(1)=(x!/ y!) d_{x-y}(1)=0$ while $\sigma_{x, x}(1)=(x!/ x!) d_{0}(1)=1$, whence $\left(\mathrm{iv}_{1}\right)$ and $\left(\mathrm{iv}_{2}\right)$ hold. Observing that $\sigma_{0, x}$ is zero for all $x>0$ and $\sigma_{0,0}=d_{0}$, we see that the rest of (iv) is valid too.

What about (iii)? A higher derivation $d_{0}, d_{1}, d_{2}, \ldots$ is iterative [4] if $d_{i} \circ d_{j}=$ $\binom{i+j}{i} d_{i+j}$ for each i, j. If (iii) is satisfied then, in particular,

$$
(i+j)!d_{i+j}=\frac{(i+j)!}{0!} d_{i+j}=\sigma_{i+j, 0}=\sigma_{i, 0} \circ \sigma_{j, 0}=i!d_{i} \circ j!d_{j}
$$

so

$$
d_{i} \circ d_{j}=\frac{(i+j)!}{i!j!}=\binom{i+j}{i} d_{i+j}
$$

and thus the higher derivation is iterative. Conversely, if the higher derivation is iterative, then for each x, y, z we have

$$
\begin{aligned}
\sum_{u+v=z} \sigma_{x, u} \circ \sigma_{y, v} & =\sum_{u+v=z} \frac{x!}{u!} d_{x-u} \frac{y!}{v!} d_{y-v} \\
& =\sum_{u+v=z} \frac{x!}{u!} \frac{y!}{v!}\binom{x-u+y-v}{x-u} d_{x-u+y-v}
\end{aligned}
$$

[^0]: (C) 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

