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Abstract

The formula for the estimation of average disproportion of
seats allocation using Hamilton method is obtained. It is shown
that, by proportionality of voters’ will representation in the final
multi-optional decision, the best from the d’Hondt, Huntington-
Hill and Sainte-Laguë methods, is the last one. Also, the use of
Sainte-Laguë method is easier than that of complemented Web-
ster method. Moreover, the proposed monotone adapted Sainte-
Laguë method is considerably better than the Huntington-Hill
one. So, for apportionment in the United States Congress House
of Representatives, the adapted Sainte-Laguë method is more
convenient than the used from 1941 year Huntington-Hill method.

Keywords: disproportion, votes-decision methods, com-
puter simulation, comparison, predicting disproportionality

1 Introduction

The main issue of multi-optional decision-making systems with pro-
portional representation (PR) is the disproportion of voters’ will rep-
resentation in final decision. As criteria of disproportionality it is op-
portune to use the Average relative deviation index (ARD) Id [2]. Its
minimum value is ensured by Hamilton (Hare) method [1, 4]. However,
this method is not immune to the Alabama, of Population and of New
State paradoxes [1]. Therefore, in many cases they deny its applica-
tion in the benefit of monotonous divisor methods, such as d’Hondt,
Sainte-Laguë and Huntington-Hill ones [1, 4]. At the same time, it is
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not strictly determined which of these “votes-decisions” (VD) methods
is more convenient.

Qualitative comparison of Hamilton, Huntington-Hill, d’Hondt,
Sainte-Laguë and Mixed VD methods by disproportionality (Id), quota
rule, immunity to paradoxes and non-favoring parties, basing on results
from [1, 3-5], are systemized in [7]. Quantitative comparisons of these
five methods for particular cases, by average disproportion and non-
favoring parties, were done in [1, 3, etc.]. Some results of comparison
of Hamilton, d’Hondt and Mixed VD methods by computer simulation
are described in [7].

Known results of comparing VD methods are extended, in this pa-
per, by computer simulation, using the elaborated application SIMOD.
The average value of Id index for optimal solutions using Huntington-
Hill and the proposed adapted Sainte-Laguë methods are added to the
existing results. The comparative analyses of monotone methods with
divisor are also done. The obtained results would allow the argued
choose of appropriate VD method. A case study in this aim is de-
scribed.

There are also compared the theoretically obtained mathematical
expressions on the average value of Id index for optimal solutions using
Hamilton method with results obtained by computer simulation.

The most known practices with refer to multi-optional decisions
are, probably, the ones related to elections. Therefore, further, the ad-
dressed aspects of multi-optional decision-making systems will be in-
vestigated (not harming the universality) through party-lists elections.

2 The optimization problem

Let [8]: M – number of seats in the elective body; n – number of parties
that have reached or exceeded the representation threshold; V – total
valid votes cast for the n parties; d = M/V – influence power (rights)
of each elector (decider); Vi, vi – number and, respectively, percentage
of valid votes cast for party i; xi, mi – number and, respectively, per-
centage of seats to be allocated to party i; Id – value of ARD index.
Here V1 + V2 + V3 + . . .+ Vn = V .
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Knowing quantities (integers): M ; n; Vi, i = 1, n, it is required to
determine the nonnegative values of unknowns xi (i = 1, n) – integers,
which would ensure the minimization of the index Id value

Id =

n
∑

i=1

|vi −mi| → min (1)

in compliance with the restriction

n
∑

i=1

xi = M. (2)

Problem (1)-(2) is of mathematical programming in integers. The
minimum value I∗d of ARD index is obtained using Hamilton method
[1, 4].

3 Disproportionality of Hamilton method’s so-

lutions

In this section, results of mathematical expectancy Ī∗d of I∗d values, ob-
tained by simulation, are compared with the theoretical approximate.

3.1 Theoretical mathematical expectancy of dispropor-

tionality

In comparative analyses, but also for various forecasts, the definition
domain of I∗d values is of interest. Knowledge of definition domain and,
also, of mathematical expectancy Ī∗d expands the information about
the possible I∗d values in concrete elections in the tendency to minimize
the index Id value. This domain is determined in [9]. The knowledge of
mathematical expectancy Ī∗d of I∗d values, theoretically investigated in
[10] would also extend the possibilities of the mentioned above analyses.

Using Id as index of disproportionality, in [10] it is obtained the
following analytical expression for I∗d for a specific election
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I∗d =
200

V

∆M
∑

j=1

(Q−Rj) = 200





∆M

M
−

1

V

∆M
∑

j=1

Rj



 , (3)

where Q = V/M is the standard quota (Hare quota), and Rj , j =
1,∆M are the largest ∆M remainders from the ∆Vi = Vi − aiQ, i =
1, n, ai = ⌊Vi/Q⌋ and

∆M =
1

Q

n
∑

i=1

∆Vi. (4)

From (3), one can see that I∗d depends on difference between ratios
∆M/M and (R1 +R2 + . . . +R∆M)/V .

Mathematical expectancy Ī∗d depends both, on the specificity of op-
timization problem, reflected in solution (3), and on the characteristics
of the set of ballots for which it is determined. In [10] four approaches
are proposed: 1) direct; 2) simplistic, based on the definition of I∗d ; 3)
highly simplified, based on a conventional election, the characteristics
of which are equal to certain average characteristics of an infinity of
polls; 4) simplified, based on n− 1 conventional polls, the characteris-
tics of which are equal to certain average characteristics of an infinity
of polls. In the following we will examine the first three approaches.

Direct approach involves the calculation of I∗dk value of I∗d index
for each election k, and then the average Ī∗d value on all K polls. At
K → ∞, Ī∗d becomes mathematical expectancy. The main drawback
of this approach is the difficulty of obtaining the analytical solution.
The solution can be obtained only by simulation, some of results being
described in s. 3.2.

The analytical solution can be obtained in the other three ap-
proaches: simplistic, highly simplified and simplified.

Simplistic approach assumes that the distribution of index I∗d

values is a symmetrical one to the middle of its definition domain [
⌣

I
∗

d,
⌢

I
∗

d], and the Ī∗d value may be determined as Ī∗d = (
⌣

I
∗

d +
⌢

I
∗

d)/2 =
⌢

I
∗

d/2.

Here
⌣

I
∗

d = 0 is the lower limit and
⌢

I
∗

d – the upper limit of the definition
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domain. According to [10], in case of this approach Ī∗d is calculated as
follow

Ī∗d =

⌢

I
∗

d

2
=

25

M

{

n, at n even
n− 1

n
, at n odd

, % of seats. (5)

From (5) it results that function Ī∗d (M,n) is monotonically decreas-
ing to M and monotonically increasing to n, and at even values of n
and M = n it does not depend on M and n. The upper limit of
Ī∗d (M,n), taking into account that n ≤ M , is obtained at M = n:
at even values of n, it does not depend on M = n and is equal to
25%; at odd values of n, it increases with increasing of M = n (since
sign(∂Ī∗d/∂n) = sign(n) > 0 at n ≥ 3) from 200/9% ≈ 22, 22%, for
M = n = 3, and tending to 25% for M = n → ∞.

The highly simplified approach involves the use, as average
value of I∗d for an infinite number of ballots K, of the value Ĩ∗d for the
conventional election with average remainders R̃j, j = 1, n. According
to [10], in case of this approach Ĩ∗d is determined as follows

Ĩ∗d =
25

M

{

n, at n even
(n+ 1)(1 − 1

n2 ), at n odd.
(6)

From (6) it can be easily seen that function Ĩ∗d (M,n) is monotoni-
cally decreasing to M and monotonically increasing to n, and at even
values of n and M = n it does not depend on M and n. The up-
per limit of Ĩ∗d (M,n), taking into account that n ≤ M , is obtained at
M = n: at even values of n, it does not depend on M = n and is equal
to 25%; at odd values of n, it increases with the decreasing of M = n

(since sign(∂Ĩ∗d (M,n)/∂n) = sign(−n2 + 2n + 3) < 0 at n > 3) from
200/9% ≈ 22,22%, for M = n = ∞, and tending to 800/27% ≈ 29,63%
at M = n = 3.

Comparing expressions (5) and (6), it can be seen that for even n

they coincide. Moreover, at n = 2, because always ∆M = 1, these
expressions convey exactly the average I∗d value, i.e.

Ĩ∗d

∣

∣

∣

n=2

=
50

M
%. (7)
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3.2 Mathematical expectancy of disproportionality, by

simulation

SIMOD application performs the direct approach for determining the
disproportionality of seats allocation, according to Hamilton method,
by computer simulation. The methodology for multi-optional PR vot-
ing systems computer simulation is described in [6]. Subject to simu-
lation is only quantities Vi, i = 1, n.

The simulation was carried out, using the following initial data:
N= 200000 (sample); V = 100000000; M = 5, 10, 20, 50, 100; n =
2, 3, 4, 5, 7, 10, 15, 20, 50, 100, n ≤ M . When generating quantities Vi,
i = 1, n, the uniform distribution was used. Some of the results of
calculations are shown in Table 1.

Table 1. Average value Ī∗ds of I∗d , obtained by simulation, %

Seats,
Number of parties, n

M 2 3 4 5 7 10 15 20 50 100

5 10,148 15,526 21,250 26,347

10 4,980 7,790 10,419 13,042 18,026 26,350

20 2,498 3,890 5,210 6,505 9,056 12,827 19,021 25,984

50 0,998 1,555 2,086 2,600 3,620 5,135 7,646 10,148 25,504

100 0,500 0,778 1,042 1,300 1,811 2,569 3,823 5,073 12,651 25,277

From Table 1 it can be seen that the Ī∗ds value is decreasing both, to
the number of seats M and to the number of parties n, the maximum
value (about 25-26%) being reached at M = n. In practice, as a rule,
cases for which M = n are not met. Ratio n/M does not exceed, usu-
ally, 0,1 and then, as it is shown in Table 1, Ī∗ds ≤ 3%. Complementary
to data of Table 1, for M = 200 and n = 20, it was obtained the value
Ī∗ds = 2, 537%, down from Ī∗ds = 5, 073% for M = 100 and n = 20.
Data from Table 1 at n = 2 also confirm justice of estimate (7).
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3.3 Comparative analyses

For comparative analysis of the three approaches: direct, simplistic and
highly simplified, the essence of which is described in s. 3.1, in sections
(a) and (b) of Table 2 there are shown respective quantitative values
for the same sets of initial data values as those used for Table 1 in s.
3.2.

Table 2. Average value of I∗d index conform to (5), (6) and combined

Seats,
Number of parties, n

M 2 3 4 5 7 10 15 20 50 100

a) Simplistic approach (Ī∗
d
), %

5 10 13,333 20 24

10 5 6,667 10 12 17,143 25

20 2,5 3,333 5 6 8,571 12,5 18,667 25

50 1 1,333 2 2,4 3,429 5 7,467 10 25

100 0,5 0,667 1 1,2 1,714 2,5 3,733 5 12,5 25

b) Highly simplified approach (Ĩ∗
d
), %

5 10 17,778 20 28,8

10 5 8,889 10 14,4 19,592 25

20 2,5 4,444 5 7,2 9,796 12,5 19,911 25

50 1 1,778 2 2,88 3,918 5 7,964 10 25

100 0,5 0,889 1 1,44 1,959 2,5 3,982 5 12,5 25

c) Combined approach (Ī∗
dc
), %

5 10 15,555 21,094 26,4

10 5 7,778 10,547 13,200 18,367 25,988

20 2,5 3,889 5,273 6,600 9,184 12,994 19,289 25,561

50 1 1,556 2,110 2,640 3,674 5,198 7,716 10,224 25,240

100 0,5 0,778 1,055 1,320 1,837 2,599 3,858 5,112 12,620 25,123

Comparing data of sections (a) and (b) in Table 2 with those of
Table 1, it can be seen that, for odd values of n, there are the following
relations: Ī∗d < Ī∗ds < Ĩ∗d , and for the even ones, except n = 2, on the
contrary, Ī∗ds > Ī∗d = Ĩ∗d . Therefore, section (c) of Table 2 presents data
for the combined approach (Ī∗dc), the average ratio, in this case, being
calculated according to formula
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Ī∗dc =
25

M

{

n, at n = 2
(n+ 1

2
)(1− 1

n2 ), at n > 2,
(8)

where (n+1/2)(1− 1/n2) = [(n− 1/n)+ (n+1)(1− 1/n2)]/2 from the
second line of (5) and (6).

To compare the direct approach (by simulation) with theoretical
approaches for each variant of the initial data, the absolute value of
difference between the value of each element of Table 1 with that of
the respective element of Table 2 is calculated. The obtained results
are shown in Table 3.

Table 3. Value of difference between Ī∗ds and indices values from Table 2

Seats,
Number of parties, n

M 2 3 4 5 7 10 15 20 50 100

a) Absolute value of difference Ī∗
ds

− Ī∗
d
, %

5 0,148 2,192 1,250 2,347

10 0,020 1,123 0,419 1,0420 0,883 1,351

20 0,002 0,557 0,210 0,505 0,484 0,327 0,355 0,984

50 0,002 0,222 0,086 0,200 0,191 0,135 0,179 0,148 0,504

100 0,001 0,111 0,042 0,100 0,096 0,069 0,090 0,073 0,151 0,277

b) Absolute value of difference Ī∗
ds

− Ĩ∗
d
, %

5 0,148 2,252 1,250 2,453

10 0,020 1,099 0,419 1,358 1,566 1,351

20 0,002 0,554 0,210 0,696 0,740 0,327 0,890 0,984

50 0,002 0,223 0,086 0,280 0,299 0,135 0,319 0,148 0,504

100 0,001 0,111 0,042 0,140 0,149 0,069 0,159 0,073 0,151 0,277

c) Absolute value of difference Ī∗
ds

− Ī∗
dc
, %

5 0,148 0,030 0,156 0,053

10 0,020 0,012 0,128 0,158 0,341 0,363

20 0,002 0,001 0,064 0,095 0,128 0,167 0,268 0,423

50 0,002 0,001 0,024 0,040 0,054 0,063 0,070 0,076 0,264

100 0,001 0,000 0,012 0,020 0,026 0,030 0,035 0,039 0,031 0,154

Comparing data of sections (a)-(c) of Table 3, it can be seen that
the lowest absolute deviations from results, obtained by simulation, are
for combined approach (Ī∗ds − Ī∗dc). Such deviations do not exceed, for
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M = n, approx. 0,5%. At the same time, for cases encountered in
practice (as a rule, n/M ≤ 0, 1), as shown in section (c) of Table 3,
|Ī∗ds − Ī∗dc| ≤ 0, 04%.

So, to forecasting the average disproportionality of seats allocation
(Ī∗d ), when applying the Hamilton method, it is appropriate to use
the expression (8), the error not exceeding 0,5% of seats, and in most
practical cases – 0,05% of seats.

4 Comparison of monotone VD methods by

simulation

There are compared the well known d’Hondt, Sainte-Laguë and
Huntington-Hill monotone VD methods. Some results of calculations
at uniform distribution of quantities Vi, i = 1, n and initial data:
M = 5, 10, 20, 50, 100; n = 3, 4, 5, 7, 10, 15, 20, 50 (n < M); V = 108;
sample size of 200000 ballots for each pair {M,n}, are presented in
Figs. 1–3.

Figure 1. Ī∗d (dHondt) −Ī∗d(Huntington-Hill), %.

From Fig. 1 one can see that, by parameter Ī∗d , in some cases the
Huntington-Hill method is better then the d’Hondt one and, in other
cases, vice versa. Also, with the increase of M and decrease of n the
Huntington-Hill method became better than the d’Hondt one. At the
same time, for cases encountered in practice (usually, n/M ≤ 0, 1),
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Figure 2. Ī∗d (dHondt) −Ī∗d(Sainte-Lague), %.

Figure 3. Ī∗d(Huntington-Hill) −Ī∗d(Sainte-Lague), %.

351



I. Bolun, A. Costas

excepting n = 2 for small values of M , Huntington-Hill method is
better than the d’Hondt one (Ī∗d (d

′H)− Ī∗d(H −H) > 0).
Similarly, from Figures 2 and 3 one can see that Sainte-Laguë

method is better then the d’Hondt and Huntington-Hill ones, no mat-
ter of parameters M and n values (Ī∗d (d

′H) − Ī∗d (S − L) > 0, Ī∗d (H −

H)− Ī∗d (S−L) > 0). Also, the value of differences Ī∗d(d
′H)− Ī∗d (S−L)

and Ī∗d(H −H)− Ī∗d(S −L) are increasing with the decrease of M and
the increase of n.

So, the best, by parameter Ī∗d , from the examined monotone meth-
ods, is the Sainte-Laguë one. However, there may be particular cases,
when the Huntington-Hill method, as well as the d’Hondt method, en-
sures a lower value of parameter I∗d then the Sainte-Laguë one. To char-
acterize such situations, parameters RSL−dH and RSL−HH are used.
Parameter RSL−dH is the ratio of the percentage of ballots, for which Ī∗d
(d’Hondt) > Ī∗d(Sainte-Laguë), to the percentage of ballots, for which
Ī∗d (d’Hondt) < Ī∗d (Sainte-Laguë). Similarly, RSL−HH is the ratio of
the percentage of ballots, for which Ī∗d(Huntington-Hill) > Ī∗d(Sainte-
Laguë), to the percentage of ballots, for which Ī∗d(Huntington-Hill)
< Ī∗d (Sainte-Laguë).

Some results of parameters RSL−dH and RSL−HH calculations, at
uniform distribution of quantities Vi, i = 1, n and initial data: M =
20, 100; n = 3, 4, 5, 10; V = 108; sample size of 200000 ballots for each
pair {M,n}, are systemized in Table 1. Here P is the percentage of
ballots, for which Ī∗d (Sainte-Laguë) = Ī∗d(Hamilton)

Table 4. Some results of parameters P , RSL−dH and RSL−HH calcula-
tion

M = 20 M = 100

n =3 n =4 n =5 n =10 n =3 n =4 n =5 n =10

P , % 94,04 91,28 89,03 85,63 94,02 91,43 89,09 81,60

R
SL−dH

,

times

12,84 13,46 15,57 32,11 12,82 14,41 16,59 37,60

RSL−HH ,

times

4,79 5,71 6,84 25,49 2,68 3,19 3,65 5,38

From Table 1 one can see that, in cases of examined initial
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data, for more than 80% of ballots Sainte-Laguë method gives the
same allocation of seats as the Hamilton one does (Ī∗d (Sainte-Laguë)
= Ī∗d(Hamilton)). Also, Sainte-Laguë method gives a better distribu-
tion of seats for a number of polls at least 12-38 times higher than the
d’Hondt one and at least of 2,525 times higher than the Huntington-Hill
one does. Elsewhere, P index is decreasing and R index is increasing
with the increase of the number n of parties: more parties – less ef-
ficient is Sainte-Laguë method in comparison with the d’Hondt and
Huntington-Hill ones.

More than that, the Sainte-Laguë method meets the lower quota
(xi ≥ ai, i = 1, n), while the Huntington-Hill one may not satisfy it
[3]. Another advantage of Sainte-Laguë method, at n = 2 it coincides
with the Hamilton (optimal) one, while the d’Hondt and Huntington-
Hill may not coincide [5]. Also, at n = 2 and n = 3, the Sainte-Laguë
method meets the quota rule (ai ≤ xi ≤ ai + 1, i = 1, n), while the
d’Hondt and Huntington-Hill ones may not satisfy it [7]

Additionally, as it is shown in [11], Webster method is not always
equivalent, as affirmed in [1] and other publications, to the Sainte-
Laguë one. For equivalence, Webster method needs, in some cases,
additional operations shown in [11]. As a result, the use of Sainte-Laguë
method is easier than that of such complemented Webster method.

Overall, the use of Sainte-Laguë method is more efficient than that
of d’Hondt and Huntington-Hill ones and is easier than that of com-
plemented Webster method.

5 The adapted Sainte-Laguë method

In some cases it is needed to allocate to each party a number of seats
not lower than an established value. For example, in the United States
Congress House of Representatives each state shall have at least one
representative (seat). The ordinary Sainte-Laguë method does not en-
sure such allocation of seats. But it is ensured by Huntington-Hill
method and the described in this section adapted Sainte-Laguë (ASL)
method.

The adapted Sainte-Laguë method differs from the Sainte-Laguë
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one only by satisfying the condition that each state shall have at least
one representative (seat) in the House. According to this method, the
allocation of seats to states shall be done as follows:

1. Let Ω be the set of states, |Ω| = n. Allocating of seats to
states with the number of population that do not exceed the standard
quota (Hare quota) Q = V/M : for i = 1, n, if Vi ≤ Q, then xi := 1,
V := V − Vi, M := M − 1, Ω := Ω/i

2. For the new set Ω of states and new values of parameters n = |Ω|,
M , V and Q = V/M , to allocate seats according to the ordinary Sainte-
Laguë method. Stop.

Statement 5.1. The adapted Sainte-Laguë method is immune to
the Alabama, of Population and of New State paradoxes.

Proof. With refer to Alabama paradox, we have: M ′ > M ; V ′
i = Vi,

i = 1, n. Therefore, V ′ = V , V ′/M ′ = Q′ < Q = V/M . Here by
stroke (‘) the parameters for the second ballot are noted. To avoid
the Alabama paradox, it shall be x′i ≥ xi, i = 1, n. Indeed, let Fj =
Vj/[2(xj − 1) + 1] = min {Vi/[2(xi − 1) + 1], i ∈ Ω/G}, where G is the
set of parties for which Vi ≤ and xi = 1. Because of Q′ < Q and
V ′
i = Vi, i = 1, n, the number of parties for which V ′

i ≤ Q′ is not larger
than that of set G. So, for states of set G, having xi = 1, the condition
x′i ≥ xi is satisfied. From the other hand, because of M ′ > M , it takes
place F ′

k ≤ Fj , where F ′
k = min {V ′

i /[2(x
′
i − 1) + 1]}, i ∈ Ω/G. That is

why for states of set Ω/G the condition x′i ≥ xi is satisfied, too.

For the case of Population paradox, we have: M ′ = M ; V ′
i = Vi,

i = 1, n/k; V ′
k > Vk. Therefore, V ′ = V + V ′

k − Vk, V
′/M ′ = Q′ >

Q = V/M . To avoid the Population paradox, it shall be x′k ≥ xk.
Indeed, if Vk ≤ Q, then xk = 1 and because of restriction (xk, x

′
k) ≥ 1

anyway occurs x′k ≥ xk. Let Vk > Q, then V ′
k > Q′, too, because

of Q′ = (V + V ′
k − Vk)/M and V ′

k = Vk + (V ′
k − Vk), from where

V ′
k − Q′ = Vk − Q + (V ′

k − Vk)(1 − 1/M) > 0, taking into account
that V ′

k > Vk and M > 1. If so, and taking into account that Q′ > Q,
the number of parties for which V ′

i > Q’ is not larger than that of
set Ω/G. Therefore, and taking into account that V ′

k > Vk, we have
F ′
k > Fj , where F ′

k = V ′
k/[2(x

′
k − 1) + 1] and Fj = Vj/[2(xj − 1) + 1] =

min {Vi/[2(xi − 1) + 1], i ∈ Ω/G} So, in case of Vk > Q the condition
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x′k ≥ xk is satisfied, too.
Finally, regarding the New State paradox, we have: V ′

i = Vi, i =
1, n; Vn+1 = 0; V ′

n+1 > 0; V ′ = V + V ′
n+1; M

′ = M + xn+1. The value
of xn+1 is obtained by applying the respective optimization method.
To avoid the New State paradox, it shall be x′i = xi, i = 1, n. Indeed,
depending on relation between Q and Q′ it may be, for the second
ballot, that some states from set G will move to set Ω′/G′ (if Q >

Q′) or on the contrary some states from set Ω/G will move to set G′

(if Q < Q′), or G′ = G ∪ (n + 1) (if Q = Q′) and no states move
between these sets. But in no cases these movements of states between
mentioned above sets do not influence the functions of preference of
parties Fi = Vi/[2(xi − 1) + 1], i = 1, n and therefore they do not
change the allocation of seats to parties.

It is easy to observe that the adapted Sainte-Laguë method is im-
mune to the Alabama, of Population and of New State paradoxes also
in cases when it is needed to allocate to each party a number of seats
not lower than an arbitrary nonnegative value, including larger than
one.

6 A case study

From 1941, the allocation of seats for the United States Congress House
of Representatives (the apportionment) is done using the Huntington-
Hill method. Let us compare, the Huntington-Hill and the described
in section 5 adapted Sainte-Laguë methods, when applied for appor-
tionment.

In Table 5 there are systemized data of apportionment for US Cen-
sus population in the period of 1940-2010 years and year 2014, being
used the following notations:

∆XHH – the number of seats by which the Huntington-Hill appor-
tionment differs from the optimal Hamilton one;

∆XASL – the number of seats by which the adapted Sainte-Laguë
apportionment differs from the optimal Hamilton one.

From Table 5 one can see that only in one from nine cases of ap-
portionment, the adapted Sainte-Laguë method gets a less proportional
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Table 5. Data of apportionment by Huntington-Hill and ASL methods

∆XHH ∆XASL

∆XHH−

∆XASL

States for which xi differs, and its deviation

from the optimal value, obtained by Hamil-

ton method

By Huntington-Hill

method

By adapted

Sainte-Laguë method

1940 2 2 0 Arkansas: -1, Nevada:

+1

Arkansas: -1, Nevada:

+1

1950 6 4 2 California: -1,

Massachusetts: -1,

Arkansas: -1, Hawaii:

+1, Nevada: +1,

Alaska: +1

California: -1,

Arkansas: -1, Nevada:

+1, Alaska: +1

1960 4 0 4 Illinois: -1, Mas-

sachusetts: -1, West

Virginia: +1, New

Hampshire: +1

None

1970 4 0 4 Illinois: -1, North Car-

olina: -1, Idaho: +1,

Montana: +1

None

1980 4 2 2 California: -1, Mas-

sachusetts: -1, New

Mexico: +1, Montana:

+ 1

California: -1, Mon-

tana: +1

1990 4 2 2 New York: -1, New

Jersey: -1, Oklahoma:

+1, Mississippi: +1

New York: -1, Wash-

ington: +1

2000 2 0 2 North Carolina: -1,

Utah: +1

None

2010 2 -2 None North Carolina: +1,

Rhode Island: -1

2014 2 0 2 Pennsylvania: -1,

Rhode Island: +1

None
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result (two seats) than the Huntington-Hill method does (year 2010),
when the Huntington-Hill method gets a less proportional result (two
or four seats) then the adapted Sainte-Laguë method does in seven
cases (years 1950, 1960, 1970, 1980, 1990, 2000 and 2014). In four cases
the apportionments obtained by adapted Sainte-Laguë method coincide
with the optimal Hamilton (years 1960, 1970, 2000 and 2014), when the
apportionment obtained by adapted Huntington-Hill method coincide
with the optimal Hamilton only in one case (year 2010). In one case
(year1940), the apportionments, obtained by both compared methods,
coincide. So, these particular cases confirm the fact that the adapted
Sainte-Laguë method is considerably better than the Huntington-Hill
one.

Let’s look beyond. We will compare the Huntington-Hill and
the adapted Sainte-Laguë methods, by computer simulation using the
SIMOD application, for the same US Census years and the same US
summary states population (V ), but for general uniform or standard
normal distribution of states population Vi, i = 1, n. As comparison
criterion we will use RASL−HH – the ratio of the percentage of ballots,
for which Ī∗d (adapted Sainte-Laguë) < Ī∗d (Huntington-Hill), to the
percentage of ballots, for which Ī∗d (Huntington-Hill) < Ī∗d (adapted
Sainte-Laguë)

The computer simulation was carried out using samples of 200000
ballots each. So, for uniform distribution of states population we
have RASL−HH (1940) = 6, 720 times and for the other eight years
– RASL−HH ∈ [7, 276; 7, 535] times. The value for the year 1940 dif-
fers essentially from values for the other eight years because in that
year there were only 48 states. For standard normal distribution of
states population, we have RASL−HH(1940) = 2, 183 times and for the
other eight years – RASL−HH ∈ [2, 258; 2, 306] times. This data also
confirm that, for apportionment, the adapted Sainte-Laguë method is
considerably better than the Huntington-Hill one.

It was also determined that, at uniform distribution of states pop-
ulation, apportionments with adapted Sainte-Laguë method have the
average value of I∗d index Ī∗d(ASL, 1940) = 2, 946 % of seats and for
the other eight years – Ī∗d(ASL) ∈ [3, 074; 3, 076] % of seats. Sim-
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ilar, at standard normal distribution of states population, we have
Ī∗d (ASL, 1940) = 2, 785 % of seats and for the other seven Census
years and year 2014 – Ī∗d (ASL) ∈ [2, 899; 2, 900] % of seats.

7 Conclusions

Combining theoretical results and computer simulation, the formula is
obtained for the estimation of average disproportion of seats allocation,
using Hamilton method, for each particular value of the number M of
seats and of the number n of parties, the error not exceeding 0,5% of
seats, and in most practical cases – 0,05% of seats. This formula can
be used to predict the disproportionality of multi-optional decisions by
Hamilton method.

By proportionality of voters’ will representation in the final multi-
optional decision, from the three compared monotone VD methods
with divisor – d’Hondt, Huntington-Hill and Sainte-Laguë, the best
is the last one. For example, in cases of examined initial data (20
≤ M ≤ 100, 3 ≤ n ≤ 10 and uniform distribution of quantities Vi,
i = 1, n) the Sainte-Laguë method gives a better distribution of seats
for a number of polls at least 12-38 times higher than the d’Hondt
one and at least of 2,5-25 times higher than the Huntington-Hill one
does. Also, the use of Sainte-Laguë method is easier than that of
complemented Webster method.

The Sainte-Laguë method is adapted to the requirement that each
party (state) shall have at least one seat (representative) in the elective
body. It is proved that the adapted Sainte-Laguë method is immune
to the Alabama, of Population and of New State paradoxes. By com-
puter simulation it is shown that ASL method is considerably better,
in sense of minimizing the disproportion of seats allocation, than the
Huntington-Hill one. So, for the US Census summary states popula-
tion (V ) and uniform distribution of states population Vii = 1, n, the
ASL method gives, in average, a better allocation of seats for a number
of polls of 6,720 times higher for the Census year 1940, and of 7,276-
7,535 times higher than the Huntington-Hill one does, for the other
seven Census years in the period of 1950-2010 years (1950, 1960, . . . ,
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2010) and year 2014. In case of standard normal distribution of states
population Vi, i = 1, n, the ASL method gives, in average, a better
allocation of seats for a number of polls of 2,183 times higher for the
Census year 1940, and of 2,258-2,306 times higher than the Huntington-
Hill one does, for the other seven Census years in the period of 1950
– 2010 years (1950, 1960, . . . , 2010) and year 2014. Apportionments
with adapted Sainte-Laguë method have the average value of I∗d index
equal to approximately 2, 9 − 3, 0 seats.

These average results were confirmed by conventional apportion-
ment for the United States Congress House of Representatives for Cen-
sus values of states population Vi, i = 1, n in the examined period: only
in one, from the nine cases of apportionment, the ASL method gets a
less proportional result than Huntington-Hill method does (year 2010),
while the Hunting-ton-Hill method gets a less proportional result than
the ASL method does in seven cases (years 1950, 1960, 1970, 1980,
1990, 2000 and 2014).

So, from the point of view of US Constitution requirement of
proportional representation of states in the United States Congress
House of Representatives, it is considerably better to use for appor-
tionment the adapted Sainte-Laguë method than the used from 1941
year Huntington-Hill method.
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