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ABSTRACT 
 

The paper present the problem of practical application of relationships 
between the structure and proprieties. Here, it is emphasised that the symmetry 
elements of crystal lattice, the phases weight and the type of interatomic bond create 
measurable effects at macroscopic level. On this basis we succeed to formulated not 
only the direct problem, i.e. to deduce the constitutive equations at macroscopic 
level by means of constitutive equations at microscopic level, but the inverse 
problem, which, beside the practical importance, has a great methodological 
significance too. The knowledge possibilities in both directions allow us to 
adequately describe the material behavior as a function of external action 
development. The study is concentrated on the non-linear effects provoqued by the 
differences between the symmetry elements at macroscopic and microscopic level, 
prorogued by the differences between the symmetry elements at macroscopic and 
microscopic level, respectively, and also by the presence of several phases in the 
studied material, which are generated in the field of elastic strains. 
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1.The principles of transition from  
micro-stresses and strains  

to macrostresses and strains 
 

In order to create a useful system of 
constitutive equations it is necessary to concomitantly 
study the material behavior at the level of material 
particle, structure element and conglomerate. We note 

ijt~ , ijd~ , the stresses and strains at material particle 
level and tij and dij at conglomerate level; based on 
geometric and equilibrium equations and on 
homogeneity conditions at conglomerate level, we 
obtain the relationships [1]: 

∫Δ =
Δ

=
0

~~1

0
V ijijij tdVt

V
t  ,  

     ijij dd ~
=  ;                        (1.1) 

pqpqnmnmijij dtdtdt ==
~~~~   

                                                                           (1..2) 
Beside the equations (1.1), (1.2), it is 

possible to deduce another relationship, which 
simultaneously satisfies the geometric and 
equilibrium equations [2] 

 

( ) ( )nmnmijnmnmnmijnmijij ddAddAtt −−−=−
~~~~~   

                                                                            (1.3) 
where the tensor ijnmA~  depends on the material point 
coordinates.  

If the stress ijt~  and strain ijd~  tensors are 
decomposed to spherical deviators and tensors: 

ijijijt δσσ 0
~~~ +=      ijijijd δεε 0

~~~
+= ,    then  

ijij σσ ~= ,   00
~σσ = , ijij εε ~= , 

00
~εε = ,  nmnmijij εσεσ ~~~~ ≠ ,       

0000
~~~~ εσεσ ≠                   (1.4) 

From (1.4) it results that the macroscopic 
values of some physical parameters are not the same 
with the similar microscopic values. The difference 
between these parameters, named incongruity [2,3] 

ijijijij εσεσ ~~~~ −=Δ  

depends only on the conglomerate surface data, but 
on its structure too. 
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According to the proposed principle, during 
the real interactions, the incongruity  reaches the 
extreme value [2,3]: 

Δ

.~~~~ Extrijijijij =− εσεσ          (1.5) 

In expressions (1.1)- (1.5) are established 
direct relationships between stresses and strains at 
microscopic and macroscopic level. We observe that 
the relationships (1.1) and (1.2) do not depend on the 
real material structure, and (1.4) and (1.5) depend on 
the structure parameters. In order to obtain a correct 
model, we must also take into account the self-
coordination phenomenon of the conglomerate 
deformation process. The structure elements in 
conglomerate loose some particular proprieties for 
common proprieties. As a result, it is not possible to 
pass directly from constitutive equations at 
microscopic level to macroscopic level. The self-
coordination processes of thermal-mechanical 
interactions is emphasised by means of stresses and 
strains at structure elements level: 

Vijij tt
Δ

= ~  , 
Vijij dd

Δ
=

~
, 

where VΔ  is the volume of considered structure 
element. The relationships (1.1)- (1.3) can be written 
at structure elements level too. Thus, the stress and 
strain tensors at material particle level can be 
presented as follows: 
 ijijijij tttt ~~ Δ+Δ+= , ijijij ttt −=Δ ,

 ijijij ttt −=Δ ~~  

              ijijijij dddd ~~
Δ+Δ+= ,   

ijijij ddd −=Δ ,   ijijij ddd −=Δ
~~

, 

where ijij dt ~,~ ΔΔ  represent the stress and strains 
variations in the material particles within the 
considered structure element 
( )constdconstt ijij == ,  and ijij dt ΔΔ ,  the 
stresses and strains variations in the conglomerate at 
structure element level. We consider that between the 
two types of variation there is a well determined 
correlation: the variations within the structure element 
are determinate by the proprieties variation. One can 
observe that: 

Ωijij tt =  ,      
Ωijij dd = ,                  (1.6) 

and for the variations between the stress and strain 
tensors we can write he relationships:  t

( )nmnmijnmijij dd~A~tt~ −=− ,   

( )nmnmijnmijij ddAtt −=−              (1.7) 

In the reversible range, ijnmijnm cA =
~

 , 

where ijnmc  represents the elasticity constants, which 

are different from a particle to another within 
considered structure element. 
 The fundamental relationships (1.2), (1.5) 
can be expressed by the variation of stress and strain 
tensors at the two structure levels and by the variation 
of respective deviators, they become: 

( ) 0~~ =ΔΔ+ΔΔ
ΩΔΩ Vijijijij dtdt  , 

( ) .~~ Extr
Vijijijij =ΔΔ+ΔΔ

ΩΔΩ
εσεσ   

                       (1.8) 
 One can be emphasised that for each 
structure element: 

 0~~ ≥ΔΔ
ΔVijij dt  . 

 As a result, the scalar product of stresses and 
strains variation at structure elements level is 
obtained with negative sign. 

 0≤ΔΔ
Ωijij dt  . 

 The integration in (1.6), (1.7) is performed 
according to orientation factor or to another 
parameter; in (1.8) was neglected the therm 

( )
Ω

− nmnmijnm ddA . It is important to notice that 

in relationship (1.5) it is not possible to pass from the 
components of the deviator of stress and strain 
tensors at microscopic level to the deviator 
components of stress and strain tensors at structure 
element level, because 

VnmVnmVijij ΔΔΔ
≠ εσεσ ~~~~ . 

 Thus, the expression (1.5), which is an 
information carrier about structure element, has an 
extremely important physical significance. The tensor 

ijnmA  reflect, only those details of the interaction 
between the considered structure element with the 
other structure elements in conglomerate, which 
influence the material behavior at macroscopic level. 
 The structure of tensor ijnmA  and its 
dependence on the integration parameter (in special 
case, on the orientation factor ) is established from 
the condition that in statistical approximation the 
relationships (1.5)- (1.8) from a complete system of 
equations; on its base are deduced the constitutive 
equations at macroscopic level by means of 
constitutive equations at microscopic level. 

Ω

 If the relationships between stresses and 
strains at structure element level are know, then from 
(1.6)- (1.8) we can express ijt  and ijd  by local 

thermal-mechanical characteristics, the tensor ijnmA  
components and the stresses and strains at 
macroscopic level. The problem of defining the 
distribution of fields ijd~ , ijt~  in the structure elements 
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is considerably simplified knowing the stress and 
strain average values in the structure elements, with 
the precision of tensor ijnmA . Thus, in relationship 
(1.5), beside the mechanical characteristics at 
microscopic level, will be present also parameters 
which describe the structure elements shape and size. 
The ijnmA  components are determined from (1.5) and 

(1.7). If the components of ijnmA tensor are know, 
then we establish the constitutive equations at 
macroscopic level from (1.6) - (1.8). 
 Further on, we will refer to some examples, which 
demonstrate the examinated model efficiency. We 
will limit to the case of isotropic materials at 
macroscopic level, in statistical approximation, i.e. 
the relationships (1.8) will be written as follows: 
( )( ) 0=−− ijijijij ddtt ,   

( )( ) .Extrijijijij =−− εεσσ                      (1.9) 

The material is considered isotropic at 
macroscopic level and the ijnmA  tensor will be 
present as follows: 

ijnmijnmijnm DAVAA 10 −= , nmijijnmV δδ
3
1

= ,    

                                   (1.10) ijnmijnmijnm VID −=
From (1.10) and (1.8) is results: 

( )ijij1ijij A εεσσ −=− ; 

ijij A εσ Δ−=Δ 1                     (1.11) 

( )00000 εεσσ −=− A ;  000 εσ Δ=Δ A     (1.12) 
Taking into account (1.11), (1.12) and (1.7) 

we obtain: 

( ) 03 1
2

00 =ΔΔ−Δ ijijAA εεε        (1.13) 

 
2. Polycrystalline materials  

with cubic lattice 
 

The relationships (1.2), (1.3) are 
automatically verified for the critical cases, that is the 
W.Voight`s )( ijij dd =  and R.Reuss`s 

( )010, === AAtt ijij  models. However, for the 
intermediate variants, the expression (1.13) imposes 
severe constraints not only to the ratio A0/A1 , but to 
the structure of relationships between the stress and 
strain variations too.  

Because ( ) ,0,02
0 ≥ΔΔ≥Δ ijij εεε  it 

results that 0
1

0 >
A
A

 and consequently, the 

E.Kroner`s model: 

,
54
57

1 ν
ν

−
−

= GA     GA 40 −=  

is in a qualitative contraction with the fundamental 
relationship (1.13). We can observe that for the 
polycrystallines monophasic materials with cubic 
lattice ( 00 εσ K=  , 00 εσ K= ), the spherical 
tensor variations cannot be determined based on the 
relationship (1.12), which is reduced to the 
expression: 
( )( ) 0000 =−− εεAK                       (2.1) 
 Indeed, from (1.13) it results that for 

00 εε =  we obtain ijij εε = , i.e. the Voight`s model. 
A complete system of equations, supposing that 

ijij tt ≠  , ijij dd = , is obtained only if it is assumed 
that in (2.1) and (1.13): 

,0 KA = ( ) ( )( ijijijijK
A εεεεεε −−=−

3
12

00 )           

(2.2) 
Thus, for some materials, the relationships 

between the stress and strain variations are 
determined based on the expressions (1.11) and 
(1.12). In the case of polycrystalline polyphasic 
materials with cubic lattice, from (1.12) we obtain: 

,0
0

000 εεεε ff
f

AK
KK

−

−
=−=Δ   

           (2.3) 

KK f ≠

where Kf is the compression modulus in the phase no. 
“f”, and fA0  is the internal parameter, which 
characterises the spherical tensor field 
unhomogeneity inside the considered phase. For the 
spherical tensor variations, from (1.13) and 
relationships: 

0εσ ff K=  ,          00 εσ K=  , 
it is obtained the expression: 
( )( ) ( )( )ij

f
ijij

f
ij

ff AKK εεεεεεεε −−=−− 100003
                        (2.4) 

If ., than from (1.13) and 
(2.3) we obtain the following relationship: 

constKK f =≠≠ ,00ε

( )( )ij
f

ijij
f

ij
f

ff

f
f A

AK
KKA εεεεε −−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

1
2
0

2

0
03  

             (2.5) 
from which it results that the parameter fA0  varies 
from a particle to another and also within the each 
phase in the case of polycrystalline polyphasic 
materials. 
In the relationships (2.4) there are only invariant 
parameters; because of this, it is appropriate to 
calculate the scalar product of the variations of strain 
tensor deviator within the crystallographic system of 
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coordinates x`i for each structure element. For the 
polycrystalline materials with cubic lattice, within the 

crystallographic system of coordinates it is obtained 
the following expression: 

 

( )( ) ( ) ( ) ( )[ ]+′+′+′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
+−

=′−′′−′ 2
22

2
22

2
11

2

11211

12112 εεεεεεε fff

ff

ijijijij Acc
ccG

 
( ) ( ) ( )[ ]2

23
2

13
2

12

2

144

44

2
222 εεε ′+′+′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

+ ff

f

Ac
cG

(2.6) 

 
To write the expressions (2.6) there were 

taken into account the relationships between stresses 
and strains within the crystallographic system of 
coordinates: 

( ) ,11121111 εσ ′−=′ cc …; ,2 124412 εσ ′=′ c           (2.7) 
After the substitution of these expressions and 
formula ijij Gεσ ′=′ 2  in (1.11), we obtain: 

( ) ,2

11211

111
11 Acc

GA
+−
′+

=′
εε  

( ) ,
2

2

144

21
12 Ac

GA
+

′+
=′

εε    (2.8) 

Within the overall system of coordinates 

nmjminij aa εε =′  and, as a result, the relationship 
(2.6) get the form: 
 

 

   

( )( )

qknm
ji

jkiqjminff

f

qknm
i

ikiqiminfff

ff

ijijijij

aaaa
Ac
cG

aaaa
Acc
ccG

εε

εεεεεε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+

+⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
+−

=′−′′−′

∑

∑

=≠

=

3

1

2

144

44

3

1

2

11211

1211

2
22

2

         (2.9) 

 
From  (2.9) it results that the scalar product 

of the variations of strain tensor deviator depends on: 
the crystals elasticity constants , which 
varie form a phase to another; the internal parameter 
A

fff ccc 441211 ,,

f
l (reflects the unhomogeneity of ijε  field in the 

conglomerate); it is worth too considering the variant 
when  or 11 AA f = ( )f

f
f AfAA ,11 ψ=  (where Af 

is the anisotropy coefficient of “f” phase and fψ  the 
phase weight); the crystallographic axes 
orientation ( )jiji a x,xcos,`x i′= ; the values of the 

components of strain tensor deviator ijε  (at 
macroscopic level). In the considered phase crystals, 
the variations of the strain tensor deviator change 
from a crystal to another only function of 
crystallographic axes orientation. 
In (2.9), G and Af

l  are unknown parameters. To 
calculate them, we`ll use the relationships (1.6), (1.9), 
(1.11), (2.8) and (2.9). We can observe that the 
relationships (2.8) within the overall system of 
coordinates could be written like an unique 
expression: 

 

kq
nm

mqnkmjniff

f

n
nqnknjnifff

f

ij aaaa
Ac
GAaaaa

Acc
GA εε ⎥

⎦

⎤
⎢
⎣

⎡
+
+

+
+−

+
= ∑∑

=≠=

3

1144

1
3

111211

1

2
22

         (2.10) 

 
 
 

Substituting (2.10) in (1.6) and taking into 
account the relationships: 

( )jkiqjqikkqijnqnknjni aaaa δδδδδδ ++=
Ω 15

1

 ,          (2.11) 
we will obtain: 

ikjqjqkikmqmjnkni Iaaaa
15
1

15
2

−=
Ω

δδ  ,    (2.12) 

where fψ  is the “f” phase weight and N-phases 
number. To deduce the formula (2.13), it was 
considered that the material particles distribution is 
homogeneous from a statistical point of view, during 
each phase. Substituting (1.11) in (1.9) and taking 
into account the relationship (2.9) in the obtained 
expression, after integration, we find: 
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  Extr
GAc

cG
Acc
ccGAN

f
fff

f

fff

fff

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
+−∑

= 2
1

2
22322

51

2

144

44

2

11211

12111 ψ         (2.14) 

 
 
Based on the relationships (2.13) and (2.14), 

we determine the unknown constants 2G and  

values. If  is known, then from the relationships 

(2.5) and (2.9) we calculate the parameter 

fA1
fA1

fA0  values 
and from (2.3) after integration: 

 0
0

=
−

−
ff

f

AK
KK

               (2.15) 

we establish the compression modulus K values. We 
can observe that form (2.5) and (2.9) it results that 

fA0  depends not only on the crystal’s elasticity 
constants, but on the deformation degree too. 
Consequently, we determine that the compression 
modulus at macroscopic level will depend on the 

deformation degree in the case of polyphonic 
materials with cubic lattice. 
 

If we refer only to monophasyc 
polycrystalline materials, then form (2.13), (2.14), 
they result the relationships: 

( ) ( )[ ]
121144

121144121144
1 3

34
ccc

ccccccA
−+

−+−
= , 

          (2.16) 

( )( )
( ) RV GG

ccc
ccccccG =

−+
−+−

=
121144

121144121144

34
3

                                     (2.17) 

 

 
( )( )

2

23325
16 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+++
−

−=
−

AAA
A

nmnm

ijijijij

εσ

εσεσ
,                  (2.18) 

1211

442
cc

cA
−

= ,   
( )( ) ijijAAA

A εσεσεσ
2

0000 23325
12 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+++
−

=−  ,              (2.19) 

 
 
obtained for the first time in [4]. We mention that Gv 
and GR represent the shear modulus values, obtained 
by W.Voight (1928) and A.Ress (1929). The 
relationship (2.19) allow us to evaluate the influence 
of anisotropy factor A on the energy dissipation under 
cyclic loads in elastic field. Based on the relationships 
(2.16), (2.17) and the formula for anisotropy factor, 
we establish the following relationships: 

63
32

2
1

+
+

=
A
A

G
A

                                   (2.20) 

from which it results that the internal parameter Af , 
which emphasises the inhomogeneities of strain and 
stress deviator fields in conglomerate satisfies the 
inequality  

GAG
3
4

1 <<                          (2.21) 

If the microscopic characteristics are unknown, then 
one can assume that . This type of 
relationships are useful for numerical computations, 
performed based on the expressions (2.13) and (2.14), 
in the case of polycrystalline polyphasic materials.  

GA 1,11 ≈

We observe that the A1 values, obtained within the 
studied model are always smaller than A1

k values, 
which result from E.Kroner`s model 5.00÷=ν . 

( ) GAG k 375.1 1 <<                       (2.22) 
According to expression (2.18), for N=1 it is obtained 
the relationship: 

( ) ( )
( ) 1121144

1441211121144

534
35
Accc

AccccccG
+−+
+−+−

=  

         (2.23) 
from which it results that the shear modulus 
diminishes with A1 increasing; as a result, the shear 
modulus obtained from (2.17) is “more microscopic” 
than the shear modulus determined by E.Kroner`s 
model. We mention that the A0 values are different 
from qualitative point of view within the 2 models: 

( ) .4; 00 GAKA k −==  
 

3. Polycrystalline materials 
with crystalline lattice symmetry lower 

than the cubic one 
 
For the polycrystalline materials with crystalline 
lattice symmetry lower than the cubic one, the 
variation of spherical tensors 00 ,εσ  is obtained 
based on the relationships (1.12). As a result, the 
formula (1.13) is completely verified. 
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According to [3], the symmetry elements at 
microscopic level lead to the appearance of some 
effects at macroscopic level, based on which one can 
concludes about material structure. Thus, from 
studied model it results that each structure element at 
microscopic level determines effects measurable at 
macroscopic level. Based on this kind of effects, it 
becomes real the inverse problem: the decoding of 

some details about material microstructure from 
macroexperience. We mention that the inverse 
problem was considered unreal until establishing 
these effects. In order formulate the final conclusions, 
we`ll refer to the computation relationships obtained  
in [3] for the polycrystalline monophasic materials 
with crystalline lattice symmetry lower than the cubic 
one: 

 

( ) 2
2
0

22

1

02
0 6036013 bbbbb

b
b

A
A

bbb pqllpqkkpqklpqklijmmijnn −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

μ
                                         (3.1) 

the bijnm tensor is determined based on the relationships: 

( ) ExtrA
bAb
bbb ijmmijnn =

−

−
0

1

2
0

21
3

,                   (3.2) 

where 

,
3
1

0 kknnbb =    ( )kknnknkn bbb −= 3
30
1

,    
pqpqεε

ε
μ

2
02 =                                (3.3)

 The bijnm tensor is determined based on the relationships: 
( ) ijnmmkmkijkl IAcb =− lnln ,                  ijnmijnmijnm DAVAA 10 −=                              (3.4) 

 
In the system (3.4) cklnm are elasticity 

constants at microscopic level within the 
crystalographic system of coordinates. Thus, in the 
non-linear equation system (3.1), (3.2) are present 
two unknowns, A0 and A1; based on them, from the 
relationships: 

,
3
1

0 kknnbb =                                      (3.5) 

( ) ,122 1 =+ AGb                        (3.6) 
we calculate the macro-elasticity constants K and G. 
 From (2.6), (2.7) it results that A0 and A1 
depend not only on the microscopic elasticity 
constants, but on the deformation degree too. As a 
result, we establish that the relationships between the 
stresses and stains at macroscopic level are non-
linear, if the structure elements have a lower 
symmetry than the cubic one; the elasticity 
characteristics K and G at macroscopic level depend 

on the deformation degree 
pqpqεε

ε
μ

2
02 =  or stress. 

 
4. Conclusions 

 
From the structural model it results that each structure 
element at microscopic level determines a measurable 
effect at macroscopic level. Starting from the 
established relationships between cause and effect, 
based on the experience at macroscopic level, we 
succeed to formulate conclusions about the 
microstructure of the examined material. 
If from macro-experience we establish that the shear 
(G) and compression (K) moduli are not influenced 

by the stress or deformation degree, than we can 
assert that the examined polycrystalline material is 
monophasic with cubic crystalline lattice. In the case 
of polycrystalline polyphasic material with cubic 
lattice, from macro-experience we find that the shear 
modulus is not influenced by the stress degree and the 
compression modulus K depends on the stress/strain 
degree. If from macro-experience we establish that 
both elasticity characteristics (K,G) depend on the 
stress degree, from the proposed model it results that 
the crystalline lattice symmetry of the examined 
polycrystalline material is lower than the cubic one; 
determining the structure of K and G parameters 
dependence on stress/strain degree, one can establish 
the details about the symmetry elements of the 
crystalline lattice and the presence of one or more 
phases. We mention that the listed effects do not 
result from other models of transition from the 
microscopic state to the macroscopic one. Based on 
the established non-linear effects, one can assert that 
exists an equivalence between the direct problem, i.e. 
the deduction of constitutive equations at microscopic 
level, and the inverse problem, the decoding of 
thermomechanical characteristics at microscopic level 
from macro-experience. We can observe that the 
majority of specialists, until the establishing of 
mentioned non-linear effects, consider the inverse 
problem without solution. The existence of inverse 
solution has a great practical and scientific 
importance. Because the structure elements in 
conglomerate modifie some proprieties, the 
knowledge direction from micro-to macro especially 
during the irreversible processes, leads to some 
unavoidable errors in conglomerate behavior 
description. This finding is available in the case of 
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inverse problem too, because not all the details of 
structure elements can be precised from macro-
experience. Thus, the knowledge process will become 
more complete, if the study is performed in both 
directions. We mention that from macro-experience it 
can be determined the interatomic bonds type. Thus, 
in the case of ionic bond (the model of central 
interaction proposed by Cauchy), besides the 
symmetry relationships, there are deduced the 
following expressions [5] too: 

;,, 232322331313113312121122 cccccc ===          (4.1) 

;,, 332123312213122311321312 cccccc ===   
 

Thus, determining, e.g., from macro - experience on a 
NaCl or KCL crystal that c1122=c1212, (for the 
materials with cubic lattice the 6 relationships (4.1) 
are reduced to an unique one c11=c44, 1∼11, 4 ∼12) , 
we establish that the interatomic bond of examined 
material is an  ionic one. For the materials with other 

bonds type, are not deduced yet supplementary 
relationships (4.1) type: this problem has a great 
methodologic importance in the context of stated 
conclusions.  
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