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ABSTRACT

The paper present the problem of practical application of relationships
between the structure and proprieties. Here, it is emphasised that the symmetry
elements of crystal lattice, the phases weight and the type of interatomic bond create
measurable effects at macroscopic level. On this basis we succeed to formulated not
only the direct problem, i.e. to deduce the constitutive equations at macroscopic
level by means of constitutive equations at microscopic level, but the inverse
problem, which, beside the practical importance, has a great methodological
significance too. The knowledge possibilities in both directions allow us to
adequately describe the material behavior as a function of external action
development. The study is concentrated on the non-linear effects provoqued by the
differences between the symmetry elements at macroscopic and microscopic level,
prorogued by the differences between the symmetry elements at macroscopic and
microscopic level, respectively, and also by the presence of several phases in the
studied material, which are generated in the field of elastic strains.
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1.The principles of transition from
micro-stresses and strains
to macrostresses and strains

In order to create a useful system of
constitutive equations it is necessary to concomitantly
study the material behavior at the level of material
particle, structure element and conglomerate. We note
o dy
level and t; and d;j at conglomerate level; based on
geometric and equilibrium equations and on
homogeneity conditions at conglomerate level, we
obtain the relationships [1]:

v a0 =)

t,. =—— t.
N

the stresses and strains at material particle

d, :<67/> ; b
<?yé?,]> = <Z1m ><‘7nm> = tpqdpq
(1.2)

Beside the equations (1.1), (1.2), it is
possible to deduce another relationship, which
simultaneously  satisfies the geometric and
equilibrium equations [2]
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-i,,-d,)-(4,.,-d,)

(1.3)

where the tensor Al.jnm depends on the material point

T —t

i ij

coordinates.

~

If the stress l‘NU and strain dij tensors are
decomposed to spherical deviators and tensors:

L, =0, + 0'054,/ dl.j =&+ £y0,

i then

)

0; = <Jz/>’ Oy :<00>’ & = <‘9@/
g =(5). <0fj€,-,- (G J(Em)-
<5050> # <50 ><‘90 (1.4)

From (1.4) it results that the macroscopic
values of some physical parameters are not the same

with the similar microscopic values. The difference
between these parameters, named incongruity [2,3]

A= <5,-,E,-,»> N <5, ><Ef>

depends only on the conglomerate surface data, but
on its structure too.
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According to the proposed principle, during

the real interactions, the incongruity A reaches the
extreme value [2,3]:
(5,2,)-(5,)(&,) = Extr. (1.5)

In expressions (1.1)- (1.5) are established
direct relationships between stresses and strains at
microscopic and macroscopic level. We observe that
the relationships (1.1) and (1.2) do not depend on the
real material structure, and (1.4) and (1.5) depend on
the structure parameters. In order to obtain a correct
model, we must also take into account the self-
coordination phenomenon of the conglomerate
deformation process. The structure elements in
conglomerate loose some particular proprieties for
common proprieties. As a result, it is not possible to
pass directly from constitutive equations at
microscopic level to macroscopic level. The self-
coordination  processes of thermal-mechanical
interactions is emphasised by means of stresses and
strains at structure elements level:

>AI7 ’

y=(5)
where AV is the volume of considered structure
element. The relationships (1.1)- (1.3) can be written
at structure elements level too. Thus, the stress and
strain tensors at material particle level can be
presented as follows:

Ly =t, + AL, + AL, AL =1,—1,,

i ij ij ij

~

dy = <dij

L =1; =1,

d,=d, +Ad, +Ad,,
Adi/ :dij _di/" Adii :dij _di/"

>

where A?U,Adij represent the stress and strains

variations
considered

(tij = const, dij = const) and Atij,Adl.j the

stresses and strains variations in the conglomerate at
structure element level. We consider that between the
two types of variation there is a well determined
correlation: the variations within the structure element
are determinate by the proprieties variation. One can

observe that:
i ={y), dy={dy), 16

and for the variations between the stress and strain
tensors we can write the relationshiSs:

in the material particles within the
structure element

~ ~ J—

R -
Zij _tij = ‘Zijnm (gnm _dnm)

~

A

ijnm

>

ijnm \** nm nm

(1.7)

In the reversible range, = Ciym >

where ¢,

jnm TEPTESENES the elasticity constants, which
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are different from a particle to another within
considered structure element.

The fundamental relationships (1.2), (1.5)
can be expressed by the variation of stress and strain
tensors at the two structure levels and by the variation
of respective deviators, they become:

(az,ad,) +<(<A747A07¢f>w)>9

(A5,A8,) + <(<A5UA§;].>AV)>Q — Exir.
(1.8)

One can be emphasised that for each
structure element:

(aR,ad,) =0

As a result, the scalar product of stresses and
strains variation at structure elements level is
obtained with negative sign.

(Af,Ad,) <0 .

The integration in (1.6), (1.7) is performed
according to orientation factor or to another
parameter; in (1.8) was neglected the therm

<Aijnm (dnm - dnm )>Q It is important to notice that

0,

in relationship (1.5) it is not possible to pass from the
components of the deviator of stress and strain

tensors at microscopic level to the deviator
components of stress and strain tensors at structure
element level, because
<O-iigij>AV # (G ) o (B ) -

Thus, the expression (1.5), which is an
information carrier about structure element, has an
extremely important physical significance. The tensor

A

ijnm
between the considered structure element with the
other structure elements in conglomerate, which
influence the material behavior at macroscopic level.

A

ijnm

reflect, only those details of the interaction

The structure of tensor and its

dependence on the integration parameter (in special
case, on the orientation factor Q) is established from
the condition that in statistical approximation the
relationships (1.5)- (1.8) from a complete system of
equations; on its base are deduced the constitutive
equations at macroscopic level by means of
constitutive equations at microscopic level.

If the relationships between stresses and
strains at structure element level are know, then from

(1.6)- (1.8) we can express t_g and ‘7[]‘ by local

thermal-mechanical characteristics, the tensor A,

ijnm
components and the stresses and strains at
macroscopic level. The problem of defining the

distribution of fields d;, 7, in the structure elements
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is considerably simplified knowing the stress and
strain average values in the structure elements, with

A

the precision of tensor A, . Thus, in relationship

(1.5), beside the mechanical characteristics at
microscopic level, will be present also parameters
which describe the structure elements shape and size.

The Aijnm components are determined from (1.5) and

of Ag/nm tensor are know,

(1.7). If the components
then we establish the constitutive equations at
macroscopic level from (1.6) - (1.8).

Further on, we will refer to some examples, which
demonstrate the examinated model efficiency. We
will limit to the case of isotropic materials at
macroscopic level, in statistical approximation, i.e.
the relationships (1.8) will be written as follows:

<(t_u —fy)@ _dij)>:0’

<(O_-l/ 0y XEU —& )> = Extr.

The material is considered isotropic at

(1.9)

macroscopic level and the Aﬁnm tensor will be

present as follows:

Zijnm = Z()Vijnm - Z1D iinm > ¥ ijnm :é 7O nm >

Dijnm = Il.jnm —Vijnm (1.10)
From (1.10) and (1.8) is results:

Eij_Uij:Algij_Eij;

AG, =—AAE, (1.11)

G, —0,=A4,(8 ~¢,): AT, =A,AE, (1.12)
Taking into account (1.11), (1.12) and (1.7)
we obtain:

(34,(A7, ) - 4,88,7,) =0 (1.13)
2. Polycrystalline materials
with cubic lattice
The relationships (1.2), (1.3) are

automatically verified for the critical cases, that is the
W.Voight's (d;=d;) R.Reuss's
(t_l.j = tij,AO =4 = O) models. However, for the

intermediate variants, the expression (1.13) imposes
severe constraints not only to the ratio Ay/A; , but to
the structure of relationships between the stress and
strain variations too.

—\2 A .
Because (Ago) >0, AEUAgl.J. >0, it
A,
=2>0
1
E.Kroner's model:

and

results that and consequently, the
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7T—5v

4-5v’
is in a qualitative contraction with the fundamental
relationship (1.13). We can observe that for the
polycrystallines monophasic materials with cubic

lattice (o, =K¢g, , o, =Kg,), the spherical

leG Z0

tensor variations cannot be determined based on the

relationship (1.12), which is reduced to the
expression:
(k-4,)z -¢,)=0 @.1)

Indeed, from (1.13) it results that for
& = & weobtain &; =&, i.e. the Voight's model.
A complete system of equations, supposing that
i,#t,.d,=d,,

i 4, is obtained only if it is assumed
that in (2.1) and (1.13):

(ng —& )(gzi - 5@1’)

(2.2)

Thus, for some materials, the relationships

between the stress and strain variations are

determined based on the expressions (1.11) and

(1.12). In the case of polycrystalline polyphasic
materials with cubic lattice, from (1.12) we obtain:

K,-K

Kf N Zof

4, =K, (Eo _‘90)2 _A

3K

Ag, =¢,—¢&, = &, K, #K

(2.3)
where K" is the compression modulus in the phase no.

“f?, and Aof " is the internal parameter, which

characterises the spherical tensor field
unhomogeneity inside the considered phase. For the
spherical tensor variations, from (1.13) and
relationships:

o/ =K' Eo ,

it is obtained the expression:

3K’ e, —Ke, )z, - )= A (Z‘Uf -¢, XZ‘J -5,
(2.4)

If &, # 0,K’ # K = const ., than from (1.13) and

(2.3) we obtain the following relationship:

2
—[ K’ -K
f 2 _ 4 (51 =f
34; (Kf —Z(jfj &y, = 4; (51.]. _5,-jx5fj —51.].)
(2.5)

from which it results that the parameter Aof varies

o,=Keg, ,

from a particle to another and also within the each
phase in the case of polycrystalline polyphasic
materials.

In the relationships (2.4) there are only invariant
parameters; because of this, it is appropriate to
calculate the scalar product of the variations of strain
tensor deviator within the crystallographic system of

)
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coordinates x; for each structure element. For the  crystallographic system of coordinates it is obtained
polycrystalline materials with cubic lattice, within the  the following expression:

DY 2G6-2¢4, YT, , .
R N e e | CRSCA BTSRRI

; A S
iy =iy + 4
(2.6)
To write the expressions (2.6) there were ( A +2G)g’ ( A +2G)5’
. . . = _\“h i oz _\4 2
taken into account the relationships between stresses En = —A: Ep = ﬁ, (2.8)
and strains within the crystallographic system of Cn T4 Cy + 4
coordinates: Within the overall system of coordinates
El’l =(C11 —cyy )51’1 m;o_-l'z =2C44§1'2, 2.7) é‘j =a, ajmé‘nm and, as a result, the relationship
After the substitution of these expressions and  (2.6) get the form:
formula El]' = 2G5,;- in (1.11), we obtain:
2G - (L
(—r r =1 ' cll +012 ( j
5o \o e )= 2970 | (Sg a7 a e, +
ij ij i ij f f in lm ik nm< qk
cli—cl+ 4 p
(2.9

2
2G -2¢!,
44
+| —— Eam a,a, |E,.,€
Jm=iq™" jk gk
2L, +47 ) 5

From (2.9) it results that the scalar product  components of strain tensor deviator g (at

of the variations of strain tensor deviator depends on: . .
I macroscopic level). In the considered phase crystals,

. ! s ,
the crystals elasticity constants ¢j},C;,Cqq, Which  ¢he variations of the strain tensor deviator change
varie form a phase to another; the internal parameter from a crystal to another only function of

A'| (reflects the unhomogeneity of €7 field in the Crystallographic axes orientation.
T et : In (2.9), G and Af, are unknown parameters. To
conglomerate); it is worth too considering the variant leul ’ 0 ‘111 the relationships (1.6), (1.9)
» calculate them, we'll use the relationships (1.6), (1.9),
when A/ =4, or A/ =A1f(l//f,A 3 P

f
(where A° (1 11), (2.8) and (2.9). We can observe that the
is the anisotropy coefficient of “f” phase and v, the

relationships (2.8) within the overall system of
) ) coordinates could be written like an unique
phase  weight); the  crystallographic  axes expression:

orientationi‘i,aii = cos(i;,x ; ); the values of the

E. = a.a.a,d a.a .a. d
ij r f f ni % nj Y% nk%ng f f ni % mj“ nk“ mq
cl] _clz + A] n=l1 2 44 + A m#n=1

_ | 4l +2G6 _ A4l +2G .
G T A AT )

, (2.10)

where r is the “f” phase weight and N-phases
Substituting (2.10) in (1.6) and taking into ’

account the relationshipS' number. To deduce the formula (2.13), it was

considered that the material particles distribution is
<a a.a.a > (5 5 +5, 5 +5.0 k) homogeneous from a statistical point of view, during
A VA T B s each phase. Substituting (1.11) in (1.9) and taking
, (2.11)  into account the relationship (2.9) in the obtained
we will obtain: expression, after integration, we find:

o 2 1
<aniankamjamq>Q :Eé‘iké‘jqk _Eliqu ’ (212)

22
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N

2

=

4
5

1

Based on the relationships (2.13) and (2.14),

we determine the unknown constants 2G and Alf
values. If Alf is known, then from the relationships

(2.5) and (2.9) we calculate the parameter Zof values

and from (2.3) after integration:

2G—c{§ +c{;

f f f
¢y — ¢y + 4

2G -2c},

2

1
—_— — = Extr 2.14
2c{4+AlfJ Y1 (26 @19

2
deformation degree in the case of polyphonic
materials with cubic lattice.

If we refer only to monophasyc
polycrystalline materials, then form (2.13), (2.14),
they result the relationships:

g = |Cu (Cll —Cn )[4644 + 3(Cll — S )]
1 3eytey—op ’

K ;e K 0

— )= (2.15)

K/ — Aof (2.16)
we establish the compression modulus K values. We —  _ |S4 (Cll ~ % )(3044 T~ Clz) -GG
can observe that form (2.5) and (2.9) it results that 4c,, + 3(011 _012) VR
Aof depends not only on the crystal’s elasticity (2.17)
constants, but on the deformation degree too.

Consequently, we determine that the compression
modulus at macroscopic level will depend on the
— — —\/= 2
<O'@/gi/>_<o'y><‘9@/> _ 6 A4-1 2.18)
(o )(Eom) 5\A +,J(2+34)3+24)
2
2c — _ A-1
A=—"2— (G,6,)— 0,6, =2 o, (2.19)
¢ —Cps (@2) 5VA+,J2+34)3+24)) "
1.75G < 4% <3G 2.22)

obtained for the first time in [4]. We mention that G,
and Gp represent the shear modulus values, obtained
by W.Voight (1928) and A.Ress (1929). The
relationship (2.19) allow us to evaluate the influence
of anisotropy factor A on the energy dissipation under
cyclic loads in elastic field. Based on the relationships
(2.16), (2.17) and the formula for anisotropy factor,
we establish the following relationships:

A _24+3
2G  34+6

from which it results that the internal parameter Ay,
which emphasises the inhomogeneities of strain and
stress deviator fields in conglomerate satisfies the
inequality

G < 4, <%G

(2.20)

2.21)

If the microscopic characteristics are unknown, then
one can assume that A, =1,1G. This type of
relationships are useful for numerical computations,
performed based on the expressions (2.13) and (2.14),
in the case of polycrystalline polyphasic materials.

We observe that the A, values, obtained within the
studied model are always smaller than Aly values,
which result from E.Kroner's model v =0+0.5.
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According to expression (2.18), for N=1 it is obtained
the relationship:

G = 5644(011 _c1z)+(cn —cp t3cy )Al
4y, +3(C11 _c1z)+5A1

(2.23)
from which it results that the shear modulus
diminishes with A; increasing; as a result, the shear
modulus obtained from (2.17) is “more microscopic”
than the shear modulus determined by E.Kroner's
model. We mention that the A, values are different
from qualitative point of view within the 2 models:

A, =K; 4 = —4G.

3. Polycrystalline materials
with crystalline lattice symmetry lower
than the cubic one

For the polycrystalline materials with crystalline
lattice symmetry lower than the cubic one, the

variation of spherical tensors &,,&, is obtained

based on the relationships (1.12). As a result, the
formula (1.13) is completely verified.
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According to [3], the symmetry elements at
microscopic level lead to the appearance of some
effects at macroscopic level, based on which one can
concludes about material structure. Thus, from
studied model it results that each structure element at
microscopic level determines effects measurable at
macroscopic level. Based on this kind of effects, it
becomes real the inverse problem: the decoding of

some details about material microstructure from
macroexperience. We mention that the inverse
problem was considered unreal until establishing
these effects. In order formulate the final conclusions,
we'll refer to the computation relationships obtained
in [3] for the polycrystalline monophasic materials
with crystalline lattice symmetry lower than the cubic
one:

A b’
2 0 H _ 2
(B, — 355 T =605 T =3 by~ byyuby 605 G.D)
1 0
the bjjnm tensor is determined based on the relationships:
bijnn ijmm - 3b($ AO E ¢ (3 2)
—_— = LXir , .
b(1-245b)
where
1 1 2 &
bO = gbkknn ° b = %(3bknkn - bkknn )’ Ill = (33)
€ pa€ pq
The bjjnm tensor is determined based on the relationships:
bijkl (cklnm - Aklnm ) = Ig‘/nm > Aijnm = AO I/ijnm - AlDijnm (34)

In the system (3.4) cunm are elasticity
constants at microscopic level within the
crystalographic system of coordinates. Thus, in the
non-linear equation system (3.1), (3.2) are present
two unknowns, A, and A;; based on them, from the

relationships:

1
b, = gbk,mn, 3.5)
262G + 4,)=1, (3.6)

we calculate the macro-elasticity constants K and G.
From (2.6), (2.7) it results that Ay and A,
depend not only on the microscopic elasticity
constants, but on the deformation degree too. As a
result, we establish that the relationships between the
stresses and stains at macroscopic level are non-
linear, if the structure elements have a lower
symmetry than the cubic one; the elasticity
characteristics K and G at macroscopic level depend
2

on the deformation degree K = or stress.

Prq gpq

4. Conclusions

From the structural model it results that each structure
element at microscopic level determines a measurable
effect at macroscopic level. Starting from the
established relationships between cause and effect,
based on the experience at macroscopic level, we
succeed to formulate conclusions about the
microstructure of the examined material.

If from macro-experience we establish that the shear
(G) and compression (K) moduli are not influenced
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by the stress or deformation degree, than we can
assert that the examined polycrystalline material is
monophasic with cubic crystalline lattice. In the case
of polycrystalline polyphasic material with cubic
lattice, from macro-experience we find that the shear
modulus is not influenced by the stress degree and the
compression modulus K depends on the stress/strain
degree. If from macro-experience we establish that
both elasticity characteristics (K,G) depend on the
stress degree, from the proposed model it results that
the crystalline lattice symmetry of the examined
polycrystalline material is lower than the cubic one;
determining the structure of K and G parameters
dependence on stress/strain degree, one can establish
the details about the symmetry elements of the
crystalline lattice and the presence of one or more
phases. We mention that the listed effects do not
result from other models of transition from the
microscopic state to the macroscopic one. Based on
the established non-linear effects, one can assert that
exists an equivalence between the direct problem, i.e.
the deduction of constitutive equations at microscopic
level, and the inverse problem, the decoding of
thermomechanical characteristics at microscopic level
from macro-experience. We can observe that the
majority of specialists, until the establishing of
mentioned non-linear effects, consider the inverse
problem without solution. The existence of inverse

solution has a great practical and scientific
importance. Because the structure elements in
conglomerate modifie some proprieties, the

knowledge direction from micro-to macro especially
during the irreversible processes, leads to some
unavoidable errors in conglomerate behavior
description. This finding is available in the case of
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inverse problem too, because not all the details of
structure elements can be precised from macro-
experience. Thus, the knowledge process will become
more complete, if the study is performed in both
directions. We mention that from macro-experience it
can be determined the interatomic bonds type. Thus,
in the case of ionic bond (the model of central
interaction proposed by Cauchy), besides the
symmetry relationships, there are deduced the
following expressions [5] too:

Cii22 = Ci2125C1133 = Ci313>Can33 = Comss (4.1)

Ciz12 = Ci1325Ci203 = 135 Ca331 = C33015

Thus, determining, e.g., from macro - experience on a
NaCl or KCL crystal that cjjp;=cippp, (for the
materials with cubic lattice the 6 relationships (4.1)
are reduced to an unique one c;;=cy4, 1~11, 4 ~12) ,
we establish that the interatomic bond of examined
material is an ionic one. For the materials with other
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bonds type, are not deduced yet supplementary
relationships (4.1) type: this problem has a great
methodologic importance in the context of stated
conclusions.
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