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Abstract. Recently, the combined Gauss Mixture and Uniform Distribu-

tions Mixture Model, shortly Gauss-Uniform Mixture Model (G-U-MM) was

proposed to better relate to the nature of a complex distribution and to sim-

plify the characterization of processes that need too many Gauss functions in

a standard Gauss Mixed Model (GMM). For a reasonably large class of im-

ages, the Gauss-Uniform distribution mixed models are easier to apply than the

GMM models because the former ones produce significantly smaller numbers

of elements in the mixture. The method has solid mathematical foundation

and might be better related to the processes of image segmentation performed

by humans. In addition, while computationally simple, it produces remarkable

results. We discuss supplementary reasons for the use of the G-U-MM heteroge-

neous models in image segmentation and improve the previously presented al-

gorithm of segmentation by removing the possible confusion between sections of

Gaussian distributions and intervals of uniform distribution. Consequently, the

approximation precision of the histogram and the segmentation are improved.

Several examples illustrate the algorithm performance.

Key words: image segmentation, Gaussian Mixture Model, Gaussian-

Uniform Mixture Model, evaluation of segmentation.
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1. Introduction

Image segmentation aims to determine in a picture the relevant “objects” and
“elements” that have significance for the human observer. Typically, in a picture, the
number of such objects is small and include, beyond the background, one or several
landscape features, as trees, animals, man-made artifacts as houses and details of
buildings, other traces of human activity, and humans and their details, as face details,
clothing, and objects carried by humans.

Segmentation poses several challenges, as the number and type of relevant ele-
ments depend on the purposes of human observation, mixing utilitarian and semantic
scope with local and global geometrical, statistical and textural properties of the im-
age. Tests performed on large groups of subjects asked to perform segmentation of the
same images show that segmentation results produced by humans may differ signifi-
cantly, see the database database [33]. Therefore, it cannot be expected that a single
segmentation procedure would yield a globally satisfactory result. This explains the
large number of segmentation methods presented in the literature, as region-growing
method [1], [2], split and merge [3], clustering methods (k-means, fuzzy C-means [4]),
edge-based segmentation [5]; thresholding – segmentation based on classification of
pixels according to their intensity [6], [7], based on graphs [8], wavelets, and other
hybrid methods (e.g., [9]).

We believe that there are several simple and general properties of the segments
that probably are used in the human segmentation process that can be transposed in
automatic segmentation procedures. We suggest that such properties are the type of
probability density function (p.d.f.) and the type of texture. For example, the eye
would detect when the statistics is essentially of Gaussian type or of uniform type.
Also, we suggest that the eye tends to merge sub-segments when their statistics is
different but whose texture is similar, or vice-versa. The idea is not to have a very
large set of segments, many of them devoid of meaning for the human observer, but
a minimal number of segments that are of interest. For example, segmenting a mean-
ingful element in the scene because of shades of light should be avoided, by combining
the respective sub-segments in a single one. In this respect, the typical decomposition
models as Gaussian Mixtures Models (GMM) are deficient, as they tend to produce a
large number of segments based on minute differences in gray level statistics. Our use
of local averaging of the histogram contributes to eliminating such small differences
and to producing larger segments with almost Gaussian approximations. There are
four key ideas in this paper:

i) The use of a mixture of Gaussian and uniform distributions for approximating
the distribution of gray levels in images, instead of pure Gaussian mixtures.
This approach is named Gauss-Uniform Mixture Model (GUMM).

ii) The use of an interval-wise (piecewise) approximation of the gray levels distri-
bution in the frame of GUMM.

iii) The image segments are determined by the gray-level intervals found in the
piecewise GUMM approximation.
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iv) The GUMM approximation is performed by a heuristic algorithm with low com-
putational demands.

The remaining part of the paper is organized as follows. Section 2 reviews the
fundamentals of the Gauss mixture model (GMM), makes a critics of the previous
version of the GUMM algorithm proposed by the authors, discuss the relation between
semantic content of the images and their segmentation, shows the rationale of using
GUMM, and briefly looks at several technical aspects of segmentation and of the
GUMMs. The third Section introduces the principle of the new heuristic GUMM
algorithm, while Section 4 presents the algorithm and its variants. The results are
summarized in Section 5. The quality of the segmentation is analyzed in Section 6.
The last Section is conclusive.

2. Fundamentals

2.1. GMM versus G-U-MM

The Gaussian Mixture Models (GMMs) were recently widely used in relation to
approximation of functions and specifically of probability density functions. Among
the frequently cited applications of GMMs are speech recognition [10], [11], detection
of emotions in speech [12], and image analysis and segmentation [13], [14].

These models rely on the fact that the family of Gaussian functions is a complete
family for the set of derivable and bounded functions f :R→ R. It is well known that
“both classification and regression can be viewed as function approximation problems”
[15]. That means that segmentation, which is a specific type of clustering, can be
reduced to approximation. Pure Gauss Mixture Models may require a large number
of Gauss functions for performing a reasonable approximation when the statistics
(probability density function, p.d.f.) of the approximated process has large regions
(intervals) where the p.d.f. is almost constant. A simple example is the uniform noise
process, which requires a huge number of superposed Gauss functions to approximate
it reasonably well in a GMM model. The heterogeneous G-U-MM was first used in
relation with image segmentation and explained in some detail in [15], [16]. In this
paper, we review the model, enhance the algorithm, discuss in detail the application
to image segmentations, and propose extensions to other heterogeneous models.

One of the disadvantages of the approach presented in the previous papers [14],
[17] is that the top section of the Gaussians, when they are large enough (wide, spread
Gaussians), are wrongly determined as constant intervals and transformed into false
uniform (U) segments. Removing from the data those intervals also creates difficulties
in the true GMM representation that were meant to stand for those regions. We im-
prove on that drawback of the method in [14], [17] by adding conditions for eliminating
that deficiency. In the remaining part of the paper, we use histograms for approximat-
ing probability densities functions. In addition, we deal with smoothed histograms.
Subsequently, throughout the paper, ‘histogram’ will actually mean smoothed his-
togram.
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2.2. Semantics and approximation in image segmentation

Various segmentation procedures have been proposed during the last five decades.
Some of them are based on simple statistical characteristics of the image mentioned
in [1]-[3], [5]-[7], [25], on more elaborate features based on fuzzy-logic descriptions of
the image properties [4], [6], or ad hoc features, as determined for example by neural
networks [18]. None of these methods yielded completely satisfactory results compared
to human segmentation. The problem may have the root in the different ways humans
and the proposed segmentation algorithms operate, or in the seeking of algorithms
based on simplified, but mathematically “elegant” methods of segmentation.

Gaussian mixture models (GMMs) are abstractions that are convenient from the
mathematical point of view. Indeed, GMMs represent a mathematically nice way of
producing a distribution with respect to a complete set of functions, in the space
of statistical distributions. The question is if this decomposition relates well to the
semantics (ontology) used by humans in the segmentation and to shape recognition
process.

Image segmentation by humans achieves detection of salient elements in an image.
Unessential details are skipped, reducing the recognition process to semantically rich
elements. We suggest that statistics and texture, the last one being perhaps predom-
inantly detected through gradients and through statistical moments, are used by the
human eye to detect “objects”, that is, segments, in images. Some dynamical form
of reconfiguring the image for abstracting semantically salient elements (segments) is
probably performed by the human mind. The use of statistics in the similar way the
human mind is doing presupposes a mechanism that is based on recognizing simple
characteristics of the statistics, as constant gray values, constant gray level distribu-
tions (uniform noise-like, uniform distribution), almost linearly varying gray levels,
and white noise (Gauss distributions). This supposed way of human object recogni-
tion, complemented by contours recognition, elicits a method of segmentation rooted
in the decomposition of the histograms in the main regions with statistics that are al-
most the same to specific, simple distributions, as constant distribution (uniform-like)
and white noise distribution.

2.3. Rationale of using G-U-MM in image segmentation

As already noted, the main role of image segmentation is the discovery in images
of elements that are hopefully meaningful to the human interpreter and the obtaining
of a simplified image, with fewer gray levels, that reduces to those essential elements
of the initial image. For human observers, it seems that segmentation may be a
relatively natural stage in image perception; however, how much pattern recognition
is involved in the human image segmentation is unclear. Therefore, trying to base a
technical method of segmentation only on basic image processing techniques, with no
higher-level knowledge on the image properties and with no feedback applied after
potential patterns are discovered may be impossible when the identified segments are
required to connect to meanings.

There is no obvious connection between segments in the image and the compo-
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nents in the pixel gray level distribution; in fact, the connection is not direct. There-
fore, the use of GMMs or other similar models in image segmentation may look a
wrong technique to use. However, some basic assumptions, frequently verified ex-
perimentally, as we empirically found out in numerous experiments, connect the use
of GMMs and G-U-MMs to segments in images. In the first place, in images that
are not overcrowded by objects, semantically significant elements in the image are
frequently rather well approximated by Gaussian components. Therefore, identifying
the Gaussian components correctly helps in getting the segments. Secondly, large
sections of the background as well as several semantically significant elements in the
image have frequently almost uniform gray level, meaning that their distribution is
uniform. Consequently, local statistics that pertain to Gaussian-like or uniform-like
distributions tend to be meaningful for the segmentation process. The presence of
these regions (see Fig. 1 – Fig. 4) shows that only-Gaussian models are not good
enough, because they actually miss the regions with uniform-like distributions of the
gray levels. Modeling uniform-like distribution with GMMs, while feasible, represents
a poor approximation method because it requires a large number of Gaussians. The
empirical evidence thus suggests that a mixture of Gaussians and uniform distribu-
tions would allow a simpler, computationally less expensive, and, most importantly,
much easier to interpret decomposition of the image in meaningful segments.

Fig. 1. Typical histogram (of test image Blood cells [19] 170× 170 pixels) easily
decomposable into one large constant interval in the middle and two Gauss functions.

The first Gauss distribution seems superposed with the first uniform distribution (UD),

but not with the second.

The perspective on image decomposition presented above shows that i) there is
no reason to believe that the GMM method is a suitable way to detect segments in
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an image; ii) in fact, there is evidence proving that GMM may be computationally
intensive and non-optimal for several classes of images; iii) we cannot expect to obtain
human-like segmentation with methods based solely on p.d.f. decomposition when
texture plays a role in the definition of the segments and when pattern recognition
processes are used by the human to perform segmentation. In this paper, we focus
on the first two issues, (i) and (ii) above.

Fig. 2. Typical histogram (of test image Lena [20] 170× 170 pixels) best modeled by a

Gaussian Mixed Model (GMM). The smoothed version of the histogram is clearly

perceived as composed of a Gaussian mixture.

Fig. 3. Histogram of the gray level version of the picture of one of the authors (available

at http://www.fict.ro/HNT.htm). Notice the two segments where the distribution

(histogram) is almost constant.
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Fig. 4. Histogram(of test image peppers [21] 170× 170 pixels) of the gray level version of

the picture of the peppers. Notice that the central interval on the histogram is an almost

constant probability one.

2.4. Segmentation based on p.d.f decomposition as an optimization
problem

The discussion in this section relates to the general topic of the segmentation
through the next assumption:

An image segmentation based on the linear decomposition of its p.d.f. according
to a set of specified functions is correct (acceptable for whatever purpose.)

This is only a working hypothesis. As we already emphasized, the hypothesis
is disputable at best and false at worst. Denote by f(g), the p.d.f. of the image,
where g is the gray level and f is a continuous function f : R→ R. Consider that the
segmentation is based on a decomposition of f according to a set Ω of functions. (The
reader is referred to functional analysis books for the basic notions in this section.)
We assume that Ω is a complete family of functions for the space of continuous real
valued functions on R, that is, for any f , there is a (possibly infinite) subset of Ω,
Ωf ⊂ Ω and a set of real numbers, ak, such that f(g) =

∑
k akωk(g), ωk ∈ Ω(f). For

now, we assume that the set Ω is specified. A finite approximate representation of f
is a sum of a finite number of functions ωk, f̃(g) =

∑
j=1..n ajωj(g). In the framework

of the segmentation task, each function ajωj in the finite decomposition represents a
segment. We do not question here the suitability of assigning the meaning of ’segment’
to the functions ajωj .

The function f̃ is an approximation, with some error, of f . Suppose that we
are interested in the square error of the global approximation. We stress again that
this optimality criterion has nothing in common with the achievement of a specified
segmentation. The square error of the global approximation is defined as

ε2(f, f̃) =

∫ g2

g1

(f(g)− f̃(g))
2
dg, (1)

where g1, g2 are the limits of the gray interval. In the framework of the approximation
problem, computationally, the optimal solution of the approximation is that that
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achieves an approximation with an error lower than a specified value, ε0. Using the
expression of the finite decomposition, for a specified set of n indices, j1, j2, ..., jn, one
has

ε2(f, f̃) =

∫ g2

g1

(f(g)−
∑

j1,...,jn

akωk(g))
2
dg. (2)

The problem becomes: Find q such that it is the smallest number of functions ωk
needed to make the error less than ε0. While formally the above condition is simple,
its application may not be so. It is one of the reasons we prefer a heuristic solution.
The problem is simple only when one can easily determine the principal component
decomposition of f .

2.5. G-U-MM as additive models

The proposed G-U-MM falls into the well-known category of additive models [23],
where the model is applied to the distribution function

f(x) = f1(x) + f2(x) + ...+ fn(x).

The model, under some hypotheses [16], may be also suitable for models of signals
in the form X = S + N , where S is a signal in a lower-dimensional space E than
the process X, and N is an independent Gaussian noise with null average and noise
covariance matrix [16].

This brings us to three entirely different problems, the first related to the filtering
of the image (noise removal), the second to the filtering of the histogram (histogram
smoothing), and the third to the segmentation.

Relating to the first problem, notice that, because we assume that the additive
noise has zero mean for the pictures to analyze, we suggest that a repeated, small
window average filtering significantly reduces the noiseN . When salt and pepper noise
is present, a mixture of repeated average and median filters may clean enough the
signal. Details on this preliminary filtering procedure are provided in [14]. Therefore,
we will consider subsequently that the only process we deal with is segmentation.

The images however may include ‘semantic noises’, that is, small objects that
actually occur in the image but are of no meaning for the viewer. Such ‘semantic noise’
is removed by smoothing of the histogram. Yet, ‘semantic noise’ may include strong
shades and details of the background that are details devoid of interest, or details of
the background and shades that are overlapping with parts of the “interesting signal”
and that have identical or close gray levels (or colors) with the “interesting” objects
in the image.

Regarding the additive model (additive in distributions) referring to segments, in
this paper we make the assumption that each of the functions fk, in this specific
additive model, are not zero on an interval where all other functions, fj 6=k, are null
(that is, piecewise decomposition). Only the latter meaning of additive model is
pursued subsequently.
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3. Heuristic G-U-MM algorithm

3.1. Limits and improvements on the basic G-U-MM

Some of the basic assumptions we put forth are not verified. In the first place, we
suppose that the eye recognizes images using both gray levels and texture. Texture
can be typically characterized using third order statistics in conjunction with second
order moments, while we take into account only the basic statistic (p.d.f.).

The additive model f(x) = f1(x) + f2(x) + ... + fn(x) is the same either if the
composing functions have the same definition domain, or if represents extensions to a
common definition domain of functions that have disjoint definition domains. While
formally this distinction is immaterial, algorithmically significant simplifications can
occur in the second case, while semantically the difference in segmentation may be
noteworthy.

Fig. 5. Simulated histogram composed of two

uniform and two Gaussian distributions.

An example of realistic histogram may look as in Fig. 5. The histogram is com-
posed by a sum of four components (not taking into account the intervals below x1
and above x5. The second and the third are two superposed uniform distributions

h(x) = u3(x) + u4(x),
where the distributions have the form

u3(x) = a3 for x ∈ [x2, x3], 0 otherwise
u4(x) = a4 for x ∈ [x3, x4] 0 otherwise

The first and the fourth components are Gaussian. On the remaining intervals of
the gray interval, where h is not constant (not uniform distribution), h is modeled
by Gaussian mixtures. The final result is composed of the set of marked intervals
corresponding to uniform and “Gaussian” distributions. To each such interval, a
segment gray value is assigned, where the segment value is the average gray value
in the interval. As presented in the preliminary papers [14], [17], preprocessing and
basic analysis steps are performed on small sliding windows (up to 24 gray values).
At this stage of mixture analysis, for intervals narrower than two windows, we split
them in two equal intervals and connect these to the adjoined intervals.



38 H.-N. Teodorescu, M. Rusu

3.2. Avoiding the false interpretations of Gaussian segments as ’uniform
distribution’ segments

For avoiding the classification of the top of the Gaussians with a large spreading as
locally uniform distribution, we use a semi-empirical method and the related algorithm
described in this section. The method is semi-empirical because we do not aim to
determine the true (precise) Gaussian decomposition for the given interval. Instead,
we aim to test if a rough approximation by a Gaussian on the interval does not
perform well enough, then extend the approximation to a larger interval to see if the
approximation behaves better than a uniform one. When the result is better for the
rough Gaussian approximation, we decide that the interval belongs to a Gaussian
section of the histogram.

We perform a rough Gaussian approximation on all intervals with uniform distri-
bution (UD). Namely, for each UD interval obtained from the UD test explained in
the previous papers [14], [17] we take the middle of the respective interval and deter-
mine a tentative spreading from the equation that relates the value of the Gaussian,
the accepted error for constancy, and the width of the interval,

A(1− e−(x−m)2/2σ2

) ≤ ε, (3)

where ε is the error used in the criterion, m is the middle of the interval determined
as UD, σ is the assumed spreading of the assumed Gaussian, and x is one of the
extremities of the interval. The factor A is the peak of the value in the interval; to
further remove the noise effect, it is determined as the average of the three largest
values in the interval. We solve the case of equality for the above and determine σ2

as:

1− ε/A = e−(x−m)2/2σ2

. (4)

After taking the logarithm, we obtain:

σ2 = −(x−m)
2
/(2 ln (1− ε/A)). (5)

Two values of σ are obtained, each for one extremity of the false UD interval, denoted
here by [x1, x2]. Namely, the two values are:

σ2
1,2 = −(x1,2 −m)2/(2 ln(1− ε/A))

We assume that the value m corresponds to the peak of the histogram in the
interval, m = argmax(k)(hk), where hk denotes the kth value of the histogram. (When
the estimation is correct, m = argmax(k)(hk) is indeed the average value according to
the Gaussian.) We take the average (σ1 +σ2)/2 as the value for σ. Then, we compute
the average square error for the approximation with the obtained Gaussian. If this
error is lower than the average square error determined in the respective interval
using the constant value approximation, we decide that the interval is not uniform,
but part of a Gaussian. In this case, the false UD segment is merged with the adjacent
segment.
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The algorithm for determining if an apparent UD interval is in fact the cap of
a Gaussian with large spreading is as follows. Assuming that the Gaussian (if it is
actually present) is not too noisy, then:

1. Choose a UD interval [k1, k2] and determine the maximal value inside it, maxkhk,
and the corresponding value of k, km. If |km − (k1 + k2)/2| < ε(k2 − k1), then
decide that km is the centre of the Gauss function. If not, determine the three
highest values in the interval [k1, k2] and determine their average. Apply the
centrality test to the average.

2. If the centrality test is not satisfied, stop: the interval [k1, k2] is an UD in-
terval, or is of unknown type, but we force the approximation by an uniform
distribution.

3. If at least one centrality test is satisfied, then determine σ1, σ2 and σ, as ex-
plained above.

4. Compute the square error for the Gauss function hypothesis,

ε2G =

k2∑
k=k1

(Gk − hk)
2

(6)

where Gk denotes the value of the Gauss function at point k; compute the square
error for the UD hypothesis

ε2U =

k2∑
k=k1

(C − hk)
2

(7)

where C is a constant represented by the average of the values in the interval,
and ε2U is the standard deviation in the interval.

5. If ε2G < ε2U (1 + εG−U ), where εG−U is a small quantity (for example, 0.5),
tentatively decide that the interval corresponds to a Gaussian.

6. If the interval corresponds to a tentative Gaussian, expand the interval with
one sample to the left. Compute again on the new interval new values for ε2G
and for ε2U . If ε2G < ε2U (1 − εG−U ), decide that the initial interval belongs to a
Gaussian. Notice the ”-” sign in the above condition, in (1− εG−U ). Then, we
expand the interval to the right with one sample. The procedure stops when
ε2G ≥ ε2U , that is when the Gaussian approximation ceases to produce an error
reduction, compared to the uniform distribution approximation.

The above procedure is applied once to each UD interval.
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4. Algorithm

In this section we present the steps of the approximation algorithm with com-
ments. Two versions of approximation are given, the second one achieving better
approximations. Notice that the algorithm does not aim to determine a very good
approximation, which would involve numerous functions in the G-U-MM model; in
contrast, we are interested to keep the number of components of the approxima-
tion low, because one of the qualities of a good segmentation is the small number
of segments. Recall that a key idea throughout this paper is to obtain a reasonable
approximation that helps separate regions of the image according to their specific
statistic in the hope that the probability distribution is related, in the human vision
mechanism, to the segmentation. Therefore, we will allow for even poor approxima-
tions, when these keep the number of segments low and do not significantly affect the
regions assigned to the segments, in the images. Some of the steps of the subsequent
presentation of algorithm are illustrated in Fig. 6.

We emphasize that the algorithm presented subsequently consists only in the new
section of the overall algorithm and adds to the basic section already presented in
[14], [17]. The basic section of the whole algorithm determines two types of intervals,
named “uniform” and “undetermined”(-type). These intervals are further processed
as follows.

1. Let the interval [x1, x2] be classified as ’undetermined-type’ (Fig. 6). Determine
the gray level in the center of the interval: h(x1+x2

2 ), where h is the histogram
function.
IF h(x1+x2

2 ) > h(x1) AND h(x1+x2

2 ) > h(x2) THEN go to step 2, ELSE go to
step 9.

Fig. 6. Fragment of histogram.

2. Find x3 = argmax(h(x)), x ∈ [x1, x2]

3. Suppose that x3 is a Gaussian peak; then, the local approximation (denoted by
h, as the histogram) h(x) = A · exp(−(x− x3)2/b). Consequently, A = h(x3).

Comment. As suggested by Fig. 3, the suppositions made in steps 1-3 lead to
a rough identification of the peak of the Gauss function, and thus, to a rough
approximation. It is possible that the double condition (connected by AND) at
step 1 is false, yet the interval corresponds to a Gauss peak. Step 9 is meant to
correct these situations.



Improved Heterogeneous Gaussian and Uniform Mixed Model 41

4. Determine b1 optimal for the left side:
For b = 3 to 7200,
determine the error of approximation for the Gaussian distribution:

ε2(b) =
∑x3

x1
(h(x)−Ae(−(x−x3)

2/b)).

Find b optimal corresponding to argmin ε2(b).

Comments: the increment in the loop is 1; the dispersion needs not be an
integer; the values 3 and 7200 were empirically found convenient for the images
processed, but other limits may be needed for other images. Because the sum
is from x1 to x3, the value of optimal b so determined is in fact optimized for
the left side, that is, we find b1 optimal.

5. Determine the error and b2 optimal for the right size.

6. Determine b optimal as b = (b1 + b2)/2, and the total error error = error1 +
error2, where error1 and error2 are those at steps 4 and 5.

Comment. The second method for finding the value of b optimal is as follows:

Using again g(x) = A · exp(−(x − (x1 + x2)/2)2)/b, where x1 and x2 are the
limits of the ’undetermined-type’ interval, we find for the left side of the ap-
proximating function, g(x1) = A · exp(−((x1 − center)/2)2)/b1 = h[x1], where
‘center’ is x3. Then,
−(x1 − center)2/b1 = log(h[x1]/A), or b1 = −(x1 − center)2/log(h[x1]/A)

where b1 is determined for x = x1.

Similarly, b2 is determined for x = x2 as
−(x2 − center)2/b = log(h[x2]/A), or b2 = −(x2 − center)2/log(h[x2]/A).

Finally, consider b = (b1 + b2)/2. (End of the variant method and of the com-
ment.)

7. Compute the error ε2(b) =
∑x3

x1
(h(x)−A · e−(xi−center)2/b), as for step 6.

8. Compare b optimal determined at step 6 with the first method with that deter-
mined by the second method, based on the corresponding errors computed at
step 7. Choose b that corresponds to the smaller error (for each b optimal we
compute the errors at steps 6 and 7).

Comment. The above steps determine and approximate only the “top” of the
Gaussians, that is the portions of the Gaussians that are erroneously detected
as “uniform” intervals. For the ascending and respectively descending segments
of Gaussians that are left as “undecided” at the detection of the UD intervals,
the subsequent steps are used.

9. For intervals declared as uniform in the first stage of the algorithm, when they
do not satisfy the condition at step 2, proceed as follows. Using an overlapping
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window of 24 gray levels on the histogram, IF the average of 6 gray levels from
the center is larger than the average of 6 gray levels from the left AND average
of 6 gray levels from the center is larger than the average of 6 gray levels from
the right, then the interval is a Gaussian one, ELSE, the interval is considered
constant (UD). For new Gaussian intervals, go to step 4 and determine the
optimal b and compute the error according to steps 4-6.

Comment. The next step in the algorithm decides if pixels at the boundaries of
the Gauss intervals, belonging to UD intervals, should or should not be merged
to the G intervals. The decision is made based on the minimal approximation
error.

10. Increment with 1 the interval of the Gaussian at the left side; compute the error
for Gaussian and uniform distribution. If the error for the Gaussian is smaller,
then we attach that gray level value to the Gaussian interval; if not, it remains
in the UD interval and no more interval enlargements are tried at left. Then,
check in the same way to the right side. If the unit enlargement of the interval
was accepted at left or right, then, we obtain and keep the new G and UD
intervals, that is, the new segmentation thresholds.

Hybrid mixtures may be expressed as mixtures of distributions on disjoint in-
tervals that are forming a partition of the [0,255] gray level interval. Alternatively,
they can be additive mixtures, with distributions superposing on some intervals. The
Gaussian mixture models assume additive mixtures with distributions superposed on
the whole [0, 255] interval. Obviously, assuming total superposition simplifies the
mathematical approach in the approximation, but produces the convolution of the
probability distribution functions. We are not aware of any paper questioning the
suitability of such an approach from the point of view of the human observer. More-
over, we draw the attention on the lack of evidence for supporting the suitability of
GMM (Gauss superposition model) for images, beyond pure technical convenience.
Consider for example a single object with uniform gray level in a small interval of
values, over a uniformly distributed background. The two parts of the image, object
and background, are in no way correlated, moreover no gray level value of one image
is present in the other object; in this case, no superposition occurs. Another exam-
ple of image where the composing distributions may be considered non-superposing,
truncated Gaussians and zero-levels on the histogram on extended intervals is the
rabbit toy in Fig. 7.

Fig. 7. Original image rabbit [22] 170×170 pixels.
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5. Results

The previous sections presented the method and the algorithm for histogram rep-
resentation as a piecewise function. The key issue was the determination of the G and
UD intervals for the piecewise representation. In turns, these intervals are assumed to
define the gray level segments in the image, which is the basic idea of the algorithm.
Partial and preliminary results presented here were recently presented in [34].

Table 1 summarizes a set of results, including the filtered histograms, the cor-
responding images, the histogram approximants, and the corresponding segmented
images. It is striking to note that Lena image seems to be the worst approximated,
because of its intricacies, yet the segmentation obtained is one of the best, compared
to the segmentation by Otsu’s method. Also notice on Lena picture that part of the
mixture of Gaussians is approximated with a staircase function. The same happens
for other histograms, especially when two Gauss functions overlap heavily.

Table 1a. Segmented images with both methods [Lena]

Original filtered histogram Segmented image
with thresholds set for the first with the first method

method (3 segments)

Original and new obtained Segmented image
histogram (6-8 segments) with the new method
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Table 1b. Segmented images with both methods [Peppers, Rabbit ]

Original filtered histogram Segmented image
with thresholds set for the first with the first method

method (3 segments)

Original and new obtained Segmented image
histogram (6-8 segments) with the new method

Original filtered histogram Segmented image
with thresholds set for the first with the first method

method (3 segments)

Original and new obtained Segmented image
histogram (6-8 segments) with the new method
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Table 1c. Segmented images with both methods [Blood Cells]

Original filtered histogram Segmented image
with thresholds set for the first with the first method

method (3 segments)

Original and new obtained Segmented image
histogram (6-8 segments) with the new method

The segmentation results obtained with the improved GUMM algorithm presented
in this paper are visibly better than the ones obtained with the previous version we
reported. However, we compromised between the complexity of the model, which is
represented by the number of Gaussian and uniform distributions in the mixture, and
the computational load. Therefore, as the approximated histograms show, the ap-
proximation is imperfect, especially in some intervals of the gray levels. For example,
for the images ’Lena’, ’peppers’, and ’rabbit’, sub-intervals that belong to regions of
Gaussian distributions are approximated with uniform distributions.

6. Objective assessment of the segmentation quality

The comparison of the results obtained with the proposed segmentation method
with the results obtained with other methods is performed by means of several ob-
jective segmentation quality indexes, following the literature [27], [28], [29], [30], [31].
The indexes we use are briefly presented below, paraphrasing the literature [27]-[31].
Notice that the smaller is the index, the better the segmentation is considered; large
numbers of segments are penalized by all indices; the criteria F1 and Q below also
penalize too large segments.
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1. Liu and Yang’s evaluation index is:

F =
√
N

N∑
j=1

e2j/
√
Sj , (8)

where N is the number of obtained regions after segmentation, Sj is the area
of region j, and e2j is the squared color error (or the gray level). The error is
computed as:

e2j =
∑
k∈Sj

(xk − x)
2
,

where xk is the gray level of the pixel, and the x is the average gray level of the
region.

2. Borsotti, Campadelli and Schettini’s in function F1 improves Liu and Yang’s
method:

F1 = 1/(1000 · SI) ·

√√√√MaxArea∑
a=1

[N(a)]1+1/a

N∑
j=1

ε2j/
√
Sj , (9)

where SI is the image surface, N(a) denotes the number of regions in the seg-
mented image having an area exactly a, and MaxArea is the area of the largest
region in the segmented image.

3. Borsotti’s criterion is based on the value of the parameter Q,

Q = (1/(10000) · SI) ·
√
N

N∑
j=1

(ε2j/(1 + logSj) +N(Sj)/Sj)
2
), (10)

where N(Sj) denotes the number of regions in the segmented image having an
area exactly Sj .

4. The intra-region uniformity criterion of Levine and Nazif [31] is:

Lev =
∑
j

∑
x∈Rj

(f(x)− 1/Sj
∑
x∈Rj

f(x))
2

=
∑
j

σ2
j /C. (11)

Above, f(x) is the intensity of the pixel x, and C is a normalization coefficient,
equal to the maximum possible variance:

C = (fmax − fmin)
2
/2.
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5. Entropy-based evaluation method [30]. It is well-known that the entropy is a
measure of the disorder; in this case, it applies to the disorder within a region of
the image. As such, it may be used as a feature of the segments and therefore
can be used in the segmentation quality assessment. The entropy for the region
j is defined as:

Hv(Rj) = −Lj(m)

Sj
· log (Lj(m)/Sj), (12)

where Lj(m)/Sj represents the probability that a pixel in region Rj has a lu-
minance value of m. The notation Hv(Rj) was simplified to H(Rj) with the
default feature v being luminance. H. Zhang et al. define the expected region
entropy of image I:

Hr(I) =

N∑
j=1

(Sj/SI)H(Rj), (13)

and the layout entropy:

Hl(I) = −
N∑
j=1

(Sj/SI) log(Sj/SI), (14)

These authors propose in [30] to combine both the layout entropy and the
expected entropy in measuring the effectiveness of a segmentation method:

E = Hl(I) +Hr(I). (15)

Table 2. Evaluation of the segmented images

Lena Peppers Rabbit Blood cells

Initial proposed method F ' 215677 F ' 216562 F ' 89900 F ' 107778

Improved method F ' 73157 F ' 109499 F ' 52371 F ' 132450

Table 3a. Evaluation and comparison of segmented images
[Lena, Peppers, Rabbit, Blood cells]

Lena Peppers Rabbit Blood cells

Improved F= 73157 F=109499 F = 52371 F=132450
proposed F1=0.0025 F1= 0.0038 F1= 0.0018 F1= 0.0046
method Q=0.0036 Q=0.0053 Q=0.0036 Q=0.0074

Lev=0.68 Lev=0.91 Lev=0.62 Lev=0.62
E=6.90 E=6.85 E=6.27 E=7.22

Otsu’s F=86556 F=79540 F=45386 F=79618
method F1=0.0030 F1=0.0028 F1=0.0016 F1=0.0028

Q=0.0043 Q=0.0035 Q=0.0020 Q=0.0058
Lev=0.69 Lev=0.84 Lev=0.68 Lev=0.55
E=6.99 E=6.65 E=6.25 E=7.48
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Table 3b. Evaluation and comparison of segmented images

[Giraffe1 [32], Girafe2, Skier [33]]

Giraffe1 [32] Girafe2 Skier [33]

Improved F=176239 F=95351 F =188243
proposed F1= 0.0115 F1=0.0033 F1=0.0075
method Q=0.0163 Q=0.0056 Q=0.0104

Lev=0.13 Lev=0.77 Lev=0.74
E=8.02 E=6.93 E=7.42

Otsu’s F=167272 F=68262 F=167367
method F1=0.0109 F1=0.0024 F1=0.0066

Q=0.0145 Q=0.0034 Q=0.0083
Lev=0.13 Lev=0.74 Lev=0.75
E=7.97 E=6.99 E=7.30

The results of the segmentation of several images with the presented method and
the results of the segmentation with Otsu’s method were assessed according to the
indexes presented above. The results of the evaluation are listed in the Tables 2 and
3. Table 2 compares the preliminary version of the segmentation algorithm [34] and
the current one. The assessment was performed using a single criterion.

7. Conclusions

We suggested that using mixtures of two elementary distributions for modeling the
distribution of the gray levels or colors in an image, a simpler way of approximation
of the histogram is obtained that, moreover, allows obtaining better segmentation
results. In addition, segmentation results sometimes are closer to the semantic con-
tent in the image. The specific mixed distribution proposed in the context of image
segmentation is the G-U-MM one. Its choice was based on empirical analysis of a set
of image histograms.

We presented detailed explanation for the rationale of the G-U-MM models pro-
posed as a foundation of the segmentation process. The proposed segmentation pro-
cedure is directly based on the G-U-MM class of models. A piecewise approximation
was used for the histogram; the piecewise representation directly connects to the
segmentation.

The algorithms given are computationally efficient. The basic algorithm is semi-
heuristic because while it has its roots in function approximation, at a certain level of
the refining of the approximation it uses heuristics to reduce the computational load.
Compared to the method proposed in our previous papers on the subject, we shown
the correctness of the procedure and we improved it to remove the confusion between
top of Gaussians with large spreading and a uniform distribution. The algorithm will
be deposited with CERFS (web page) and is available for research purposes.

The analysis of the segmentation results was performed by computing objective
quality metrics. The comparison of the values of these indices as obtained with the
proposed method and as obtained with Otsu’s segmentation shows that the segmen-
tation is improved by the use of G-U-MM method for some typical images, but not for
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all. This is natural, as the GUMM model covers in an efficient manner (i.e., with few
Gaussians and few uniform distributions) only a subclass of images. Choosing a suit-
able model (approximation) of the image statistics between different possible models,
for example between GMMs and GUMMs, must guide what images are suitable for
segmentation with the GUMM method.
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