

А. И. Бобрышева, С. С. Руссу, П. И. Хаджи, С. А. Москаленко, Об одном способе создания высокой плотности долгоживущих экситонов Γ_2^+ в кристалле Cu₂O, *Физика твердого тела*, 1983, том 25, выпуск 5, 1562–1564

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 81.180.74.152 26 октября 2021 г., 12:15:49

- В. В. Васильев, Д. Г. Есаев, С. П. Синица. ЖТФ, 42, 725, 1982.
 П. А. Пундур, Я. А. Валбис. Изв. АН ЛатвССР, сер. физ. и техн. наук, № 4, с. 27, 1979.
 Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах, т. I. М., Мир, 1982.
- [4] В. А. Гриценко. Оптические свойства нитрида кремния. В кн.: Нитрид
- кремния в электронике. Новосибирск, Наука, 1982. [5] С. М. Репинский, Т. П. Смирнова, Ф. Л. Эдельман. Струк-тура и химический состав Si₃N₄. В кн.: Нитрид кремния в электронике. Новосибирск, Наука, 1982.

Институт физики полупроводников СО АН СССР Новосибирск

Поступило в Редакцию 30 декабря 1982 г.

Физика твердого тела, том 25, в. 5, 1983 Solid State Physics, vol. 25, M 5, 1983

ОБ ОДНОМ СПОСОБЕ СОЗДАНИЯ высокой плотности долгоживущих экситонов г⁺ В КРИСТАЛЛЕ Cu₂O

А. И. Бобрышева, С. С. Руссу, П. И. Хаджи, С. А. Москаленко

Бозе-эйнштейновская конденсация (БЭК) экситонов впервые изучалась теоретически в работах [1-4]. БЭК сопровождается появлением новой линии с характерными свойствами в спектре излучения кристаллов. До недавнего времени достаточно убедительных экспериментальных доказательств БЭК экситонов не существовало.

Наблюдение БЭК экситонов затруднено следующими обстоятельствами: 1) при оптическом возбуждении экситонов волновой вектор экситона равен волновому вектору света; переход экситонов в состояние с k=0 происходит путем рассеяния на акустических фононах за время порядка времени жизни экситона; 2) в кристаллах, в которых образуется биэкситон, следует ожидать конденсацию биэкситонов.

Кристалл Cu₂O является благоприятным объектом для наблюдения БЭК экситонов. Экситон желтой серии с $n{=}1$ состоит из электрона в зоне проводимости Г⁺ и дырки в валентной зоне Г⁺. Обменное взаимодействие электрона и дырки расщепляет этот уровень на два уровня с симметрией Γ_5^+ (ортоэкситон) и Γ_2^+ (параэкситон). Уровень Γ_5^+ квадрупольно активен, а квадрупольно активные переходы в состояния Γ_2^+ возгораются только в магнитном поле. Дипольные переходы в эти состояния в свободном кристалле возможны только с участием фононов. Переход в состояние Г⁺₂ происходит только с участием фонона Γ_{5} . Вероятность перехода в состояние Г⁺₅ наибольшая при участии фонона Г₃. Отношение эффективных масс электрона и дырки, а также их обменное взаимодействие таковы, что биэкситон в Cu₂O, по-видимому, не образуется [⁵].

В работе [6] экспериментально показано, что вплоть до температуры 30 К время жизни ортоэкситона $\tau_0 \approx 10^{-9}$ с в основном определяется конверсией ортоэкситона в параэкситон. В этой области температур при данном уровне возбуждения концентрация ортоэкситонов сильно изменяется. Эффективная температура ортоэкситонов выше температуры решетки. Параэкситоны термализованы и их время жизни т_p=13 µc. При сравнительно небольших уровнях возбужления ~ 10¹⁸ фот/см³ · с форма линии излучения параэкситонов приближенно описывается распределением Бозе,

но плотность экситонов ниже необходимой для вырождения при данной температуре [^{6, 7}]. При высоких уровнях возбуждения $\sim 10^{27}$ фот/см³·с асимптотическое приближение к вырождению наступает и в системе ортоэкситонов [⁷]. Их эффективная температура $T_{sbb}=20$ K.

Мы предлагаем прямой способ создания долгоживущих параэкситонов Γ_2^+ , а именно, двухфотонное поглощение с рождением в одном акте пары экситонов Γ_2^+ . По симметрии такой процесс разрешен, так как неприводимое представление Γ_1^+ , по которому преобразуется волновая функция двух экситонов, содержится в прямом произведении $\Gamma_4^- \times \Gamma_4^- = \Gamma_1^+ + \Gamma_3^+ + \Gamma_4^+ + \Gamma_5^+$ ($\Gamma_4^- - -$ неприводимое представление, по которому преобразуется ∇).

Во втором порядке теории возмущений для коэффициента двухфотонного поглощения света с образованием двух свободных параэкситонов Г при одинаковых частотах и равных нулю волновых векторов поглощаемых фотонов получим

$$k = \frac{83\pi e^4 A^4 m_3 n_{\oplus}}{m_0^4 a a_0^5 \epsilon^{3/2} c \hbar \omega^2 \Delta^2} \sqrt{x} \left(\frac{9}{4} + x\right)^{-1_0} \{(0.2 + 4x + x^2) (\mathbf{e_1} \mathbf{e_2})^2 + x (1 + 0.4x) (e_{1x} e_{2x} e_{1y} e_{2y} + e_{1x} e_{2x} e_{1z} e_{2z} + e_{1y} e_{2y} e_{1z} e_{2z})\},$$
(1)

где $x=G/I_{1s}, G=2\hbar$ ($\omega-\omega_0$), a_0 — радиус экситона; $\alpha=m_e/m_3$; A — константа, определяемая из экспериментально полученной силы осциллятора

однофотонного «запрещенного» перехода [⁸]; ε — диэлектрическая проницаемость; c — скорость света в вакууме; n_{ϕ} — концентрация фотонов; $\Delta = \frac{5}{4} I_{1s} + \delta$. При получении (1) воспользовались тем, что в Cu₂O $\alpha \approx \beta$. Из (1) видно, что вблизи пороговой частоты (вблизи $\mathbf{k} \approx 0$) угловая зависимость двуфотонного поглощения света ~ $(\mathbf{e}_1 \mathbf{e}_2)^2$, где \mathbf{e}_i — орт поляризации фотона.

Спектральная зависимость коэффициента двухфотонного двухэкситонного поглощения света.

Рассматривая частный случай е₁ || е₂, из (1) получим

$$k = \frac{83\pi e^4 A^4 m_3 n_{\oplus}}{m_0^4 \alpha a_0^5 \epsilon^{3/2} c \hbar \omega^2 \Delta^2} \sqrt{x} \ (0.2 + 4x + x^2) \left(\frac{9}{4} + x\right)^{-10}.$$
 (2)

Если для оценок взять параметры, близкие к кристаллу Cu₂O, при концентрации фотонов n_ф=10¹⁵ см⁻³ для максимального значения коэффициента двухфотонного двухэкситонного поглощения света получаем $k^{ t max}=$ =25.6 см⁻¹. Зависимость коэффициента поглощения от частоты падающего света представлена на рисунке. Из (2) и рисунка видно, что полоса поглощения характеризуется пороговой частотой, равной частоте экситонного перехода, и имеет асимметричную форму с пологим коротковолновым хвостом. Максимум полосы смещен в коротковолновую область от пороговой частоты на величину, равную 0.4 I_{1s}=55.7 мэВ, а полутирина составляет $\Gamma = I_{1s} = 139$ мэВ. С ростом x (увеличением частоты поглощаемого света) поглощение растет пропорционально ($\omega - \omega_0$)^{1/2}. Рост поглощения обусловлен увеличением плотности состояний в экситонной зоне, так как с увеличением частоты поглощаемого света их волновые векторы растут. Убывание же на коротковолновом хвосте, пропорциональное (9/4 + x)-10, обусловлено характером поведения волновых функций относительного движения в импульсном пространстве.

С ростом уровня возбуждения коэффициент поглощения растет пропорционально плотности падающего пучка фотонов. Появление полосы

с указанными нами свойствами будет свидетельствовать об осуществлении процесса двухфотонного рождения двух параэкситонов Г₂⁺. Имея ввиду, что при больших уровнях возбуждения величина коэффициента поглощения будет больше, можно надеяться на создание концентрации экситонов, достаточной для их бозе-эйнштейновской конденсации.

Литература

[1] С. А. Москаленко. ФТТ, 4, 276, 1962.
 [2] Ј. М. Вlatt, К. W. Вöer, W. Brandt. Phys. Rev., 126, 1691, 1962.
 [3] R. С. Саsella. J. Appl., 34, 1703, 1963.
 [4] Л. В. Келдыш, А. Н. Козлов. ЖЭТФ, 54, 978, 1968.
 [5] F. Bassani, M. Rovere. Sol. St. Commun., 19, 987, 1976.
 [6] A. Mysyrowicz, D. Hulin. Phys. Rev. Lett., 43, 1123, 1979.
 [7] A. Mysyrowicz, D. Hulin, C. Benoit à la Guillaume. J. Lummin., 24/25, 629, 1981.
 [8] Р. Нокс. Теория экситонов. М., Мир, 1966.

Институт прикладной физики АН МССР

Кишинев

Поступило в Редакцию 27 сентября 1982 г. окончательной редакции 3 января 1983 г.

Физика твердого тела, том 25, в. 5, 1983 Solid State Physics, vol. 25, N 5, 1983

ШИРИНА ЭПР ЛИНИИ ИОНА Сг³⁺ В ИЗУМРУДЕ

Р. М. Мартиросян, М. О. Манвелян, Г. А. Мнацаканян

В [1] нами исследовалось неоднородное уширение ЭПР линии иона Cr^{3+} в изумруде. Несовершенства образцов — разориентация оси ($\Delta \theta$) и внутренние напряжения — были оценены сравнением ширин линии междублетных переходов с внутридублетным, считая последний неуширенным.

В данной работе представлены результаты исследования на частоте 9.2 ГГп формы, концентрационной и угловой зависимостей ширины линии внутридублетного перехода $3 \leftrightarrow 4\left(-\frac{1}{2} \leftrightarrow \frac{1}{2}\right)$, а также неоднородного уширения этой линии. Использованы образцы с концентрацией Cr³⁺ $c = 0.033 \pm 2\%$. Получено, что форма линии при $0.1 < c \leqslant 0.34\%$ ближе к лоренцовой, а вне этого интервала — к гауссовой. При c < 0.7% ширина линии не зависит от концентрации и составляет 1.8+0.2 Гс, что в основном обусловлено спин-спиновыми взаимодействиями между Cr³⁺ и ядрами окружающих его диамагнитных атомов Al и Be, имеющих нечетный спин. Ядра, попадающие в сферу с $R{=}15$ Å, дают вклад в ширину линии ~ 1.1 Гс.

Концентрационная зависимость ширины линии нелинейна: $\Delta H \sim c^{1.6}$, что объясняется неконтролируемыми примесями, а также ошибками при измерении концентрации Cr³⁺ в образцах.

В некоторых образцах наблюдалось неоднородное уширение линии (рис. 1, кривые 1, 2). Уширение, при котором ΔH (90°) $\gg \Delta H$ (0°), мы приписываем наличию в этих образцах внутренних напряжений, и только при косых ориентациях, когда ΔH (0°) $\approx \Delta H$ (90°), — блочности образца.

Действительно, наблюдаемая ширина обусловлена шириной линии идеального образца $2\Delta g$ и неоднородного уширения, вызванного разориентацией оси и внутренними напряжениями $\Delta H_{\mu}[^{2,3}]$. При статистической независимости и гауссовом распределении Δg , $\Delta \theta$ и ΔH_{μ} ширина линии любого перехода равна

$$\Delta H = 2 \sqrt{(\Delta g)^2 + \left(\frac{dH}{d\theta}\right)^2 \Delta \theta^2 + \Delta H_{\pi}^2(\theta)}, \qquad (1)$$