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The collective elementary excitations of the two-dimensional

(2D) magnetoexcitons in the state of their Bose–Einstein

condensation (BEC) with nonzero wave vector k and inplane

parallel oriented motional dipole moments are investigated

in the Hartree–Fock–Bogoliubov approximation (HFBA).

The breaking of the gauge symmetry is achieved using the

Bogoliubov theory of quasiaverages and the Keldysh–Kozlov–

Kopaev (KKK) method. The starting Hamiltonian and the

Green’s functions are determined using the integral two-

particle operators instead of the single-particle Fermi operators.

The infinite chains of equations of motion for the multioperator

four- and six-particle Green-s functions are truncated following

the Zubarev method and introducing a small parameter of

the perturbation theory related with the lowest Landau levels

(LLLs) filling factor and with the phase-space filling factor.

The energy spectrum of the collective elementary excitations

consists of the mixed exciton–plasmon energy braches, mixed

exciton–plasmon quasienergy branches as well as the optical

and acoustical plasmon energy branches. The exciton branches

of the spectrum have gaps related with the negative values of

the chemical potential and attractive interaction between the

2D megnetoexcitons with inplane, parallel oriented motional

dipole moments. The slopes of the mixed exciton–plasmon

branches are determined by the group velocities of the moving

condensed excitons in the laboratory reference frame. The

acoustical and optical plasmon energy branches are gapless.

Their dependence on the smallwave vectors accounted from the

condensate wave vector k is linear and quadratic, respectively,

with saturation in the range of high values of the wave vectors.
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1 Introduction The properties of the symmetric two-

dimensional (2D) electron–hole (e–h) system, with equal

concentrations of both components in a strong perpendicular

magnetic field, with coinciding matrix elements of Coulomb

electron–electron (e–e), hole–hole (h–h), and e–h inter-

actions have attracted a great deal of attention in the last two

decades [1–8]. A hidden symmetry and the multiplicative

states were discussed in numerous papers [5, 9, 10]. The

collective states such as the Bose–Einstein condensation

(BEC) of 2D magnetoexcitons and the formation of the

metallic-type electron–hole liquid (EHL) were investigated

in Refs. [1–8]. Studying the phenomenon of the BEC has

become a milestone in condensed-matter physics [11]. The

remarkable properties of superfluids and superconductors

are intimately related to the existence of a bosonic

condensate of composite particles consisting of an even

number of fermions. In highly excited semiconductors the

role of such composite bosons is taken on by excitons, which

are the bound states of electrons and holes. Furthermore, the

excitonic system has been viewed as a keystone system for

exploration of the BEC phenomena, since it allows the

particle density and interaction to be controlled in situ.

Promising candidates for experimental realization of such

system are semiconductor quantumwells (QWs) [12], which
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have a number of advantages compared to the bulk systems.

The coherent pairing of electrons and holes occupying only

the lowest Landau levels (LLLs) has been studied using the

Keldysh–Kozlov–Kopaev (KKK) method and the general-

ized random-phase approximation (RPA) in Refs. [6, 13].

The BEC of magnetoexcitons takes place in a single exciton

state with the wave vector k, suggesting that the high density

of electrons in the conduction band and of holes in the

valence band were created in a single QW structure with the

size quantizationmuch greater than the Landau quantization.

When k 6¼ 0 a new metastable dielectric liquid phase formed

by Bose–Einstein condensed magnetoexcitons has been

revealed [6, 7]. The importance of the excited Landau levels

(ELLs) and their influence on the ground states of the

systems was first noted in Refs. [2–5]. The influence of

the ELLs of electrons and holes was studied in detail in

Refs. [7, 8]. The indirect attraction between electrons (e–e),

between holes (h–h) and between electrons and holes (e–h)

due to the virtual simultaneous quantum transitions of the

interacting charges from LLLs to ELLs is a result of their

Coulomb scattering. The first step of the scattering and the

return to the initial states were described in the second order

of the perturbation theory.

Plasmon oscillations in the one-component system of

the monolayer in a strong perpendicular magnetic field were

studied byGirvin et al. [14], who proposed themagnetoroton

theory of collective excitations for the conditions of the

fractional quantumHall effect (FQHE). The FQHE occurs in

the low-disorder, high-mobility samples with partially filled

Landau levels with the filling factor in the form n ¼ 1=m,
where m is an integer. Considerable progress has recently

been achieved toward understanding the nature of the many-

body ground-statewell described by the Laughlin variational

wave function [15]. Theory of the collective excitation

spectrum proposed in Ref. [14] is closely analogous to

Feynman’s theory of superfluid helium [16]. The main

Feynman arguments lead to the conclusions that on general

grounds the low-lying excitations of any system will include

density waves. As regards the 2D system the perpendicular

magnetic field quenches the single-particle continuum of the

kinetic energy leaving a series of discrete highly degenerate

Landau levels, which are spaced in energy at intervals �hvc.

In the case of the filled Landau level, n ¼ 1, the lowest

excitation is necessarily the cyclotron mode in which

particles are excited into the next Landau level, because of

the Pauli exclusion principle. In the case of FQHE the LLL is

fractionally filled. The Pauli principle no longer excludes

low-energy intra-Landau-level excitations. For the FQHE

case the low-lying excitations have primary importance,

rather than the high-energy inter-Landau-level cyclotron

modes [14]. The spectrum has a relatively large excitation

gap at zero wave vector kl ¼ 0 and in addition it exhibits a

deep magnetoroton minimum at kl � 1, quite analogous to

the roton minimum in helium. The magnetoroton minimum

becomes deeper with decreasing filling factor n in the row

1=3; 1=5; 1=7 and this is a precursor of the gap collapse

associated with the Wigner crystallization that occurs at

n ¼ 1=7. For the largest wave vectors the low-lying mode

crosses over from being a density wave to becoming a

quasiparticle excitation [14]. The Wigner crystal transition

occurs slightly before the roton mode becomes completely

soft. The magnitude of the primitive reciprocal lattice vector

for the crystal lies close to the position of the magnetoroton

minimum. The authors of Ref. [14] suggested also the

possibility of pairing of two rotons of opposite momenta

leading to the coupling of two-roton states with a small total

momentum, as is known to occur in helium. Contrary to

the case of fractional filling factor, the excitations of a

filled Landau level in the 2DEG were studied by Kallin and

Halperin [17].

Fertig [18] investigated the excitation spectrum of two-

layer and three-layer electron systems. In particular the two-

layer system in a strong perpendicular magnetic field with

filling factor n ¼ 1=2 of the LLL in the conduction band of

each layer was considered. The interlayer separation z and

spontaneous coherence of a two-component 2D electron gas

were introduced.

Both half-filled layers a and b are accompanied by a

substrate with the positive charge, which ensures the

electrical neutrality of the system. The half-filled layer a

can be considered as fully filled by electrons in the LLL of

the conduction band and a half-filled by holes in the same

LLL of the conduction band.

The electrons of the fully filled conduction band are

compensated by the charge of the substrate and we can only

consider the electrons on the layer b and the holes on the layer

a. Then, the wave function [18] of the coherent two-layer

electron system can be rewritten in the form that coincides

with the BCS-type wave function of the superconductor. It

represents the coherent pairing of the conduction electrons

on the LLL of the layer b with the holes in the LLL of the

conduction band of the layer a and describes the BEC of

such unusual excitons named FQHE excitons, because they

appear under conditions suitable for observation of the

FQHE. Here, only the BEC on the single exciton state with

wave vector k¼ 0 is considered.

Fertig determined the energy spectrum of the elementary

excitations in the framework of this ground state. In the case

when z ¼ 0 the lowest-lying excitations of the system are

the higher-energy excitons.

Because of the neutral nature of the k¼ 0 excitons

the dispersion relation of these excitations is to a good

approximation given by �hvðkÞ ¼ EexðkÞ � Eexð0Þ, where
EexðkÞ is the energy of the exciton with wave vector k. This

result was first obtained by Paquet et al. [5] using a RPA. For

z ¼ 0 the dispersion relation vðkÞ vanishes as k2 for k ! 0,

as one expects for the Goldstone modes.

vðkÞ behaves as an acoustical mode vðkÞ � k in the

range of small k for z > 0, whereas vðkÞ tends to the

ionization potential DðzÞ in the limit k ! 1.

In the region of intermediate values of k, when kl � 1,

the dispersion relation develops dips as z increases. At a

certain critical value of z ¼ zcr the modes in the vicinity of

the minima become equal to zero and are named soft modes.
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