

Z
PHISICA

Induced coherent macroscopic states of excitons and biexcitons in a microcavityembedded Zn_{1-x}Cd_xSe-type quantum well

A. I. Bobrysheva, S. A. Moskalenko, S. S. Russu

https://doi.org/10.1016/S1386-9477(99)00329-X

Abstract

The conditions of induced and spontaneous Kosterlitz–Thouless-type Bose–Einstein condensation (BEC) of excitons and biexcitons in a microcavity-embedded quantum well are discussed. As an example the Zn_{1-x}Cd_xSe/ZnSe quantum well is considered, where the HH-exciton electronic structure consisting of four types of excitons – E(x), E(y), A₁, A₂ is taken into account. A polarized strong pump pulse with the frequency in the polariton region induces the BEC of polaritons and biexcitons. The biexciton is formed from the above-mentioned four types of excitons. The coherent polariton and biexciton concentration were obtained. It was proved that if the cavity photon mode $E_{ph}(0)$ is below the exciton resonance $E_{ex}(0)$, the biexciton is always polarized. If $E_{ph}(0)$ >Eex(0) and the pump frequency is in the electron–hole transition region, optical nonactive A₁, A₂ HH-excitons can be accumulated and spontaneous Kosterlitz–Thouless-type BEC of biexcitons and "dark" excitons can occur.