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Abstract. The authors present the use of the revised fractional Riemann-

Liouville derivative in the fractional tangent bundle of order k,
αk

TM , of a
differential manifold M and the behavior of some objects under a change of

local map. Among the geometrical structures defined on
αk

T M we consider
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αk
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1 Introduction

It is known that the operators of fractional integration and derivation have geometrical
and physical interpretations (see [7]) and they have been used in the modelation of
problems in various domains. For example, in [6], the use of the revised Riemann-
Liouville integral and derivative is shown.

In this paper, the fractional differential calculus on a differential manifold and
the principal geometrical structures on the fractional tangent bundle of order k are
considered. We also define the Euler-Lagrange equations associated to a function on
that bundle.

Section 2 contains the definitions of the fractional operators on IR and some of
their properties which are used in the sequel.

In Section 3, we describe the principal elements of fractional differential calculus
on a manifold.

The fractional tangent bundle of order k,
αk

T M (α > 0) and some structures having
a geometric character are defined in Section 4.
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In Section 5, the fractional Euler-Lagrange equations are established by using the
notions of classical extremal value and fractional extremal value of an action. We
also give two examples which prove that certain equations do not admit classical
Lagrangians but they can be considered as fractional Euler-Lagrange equations.

2 Brief overview of fractional differential calculus

There are many books dealing with the fractional differential calculus and various
definitions of the fractional integration and derivation. For the purpose of this note
the revised Riemann-Liouville operators will be used (see [?]).

Let Γ(α) be the gamma function of the parameter α. α is not necessarily an integer
and Γ(1 + α) = α! if α is natural. For a function f : I ⊂ IR → IR with 0 ∈ I the
fractional derivative of order α is defined by the expressions:

(2.1) Dα
t f(t) :=

1
Γ(−α)

∫ t

0

f(s)− f(0)
(t− s)1+α

ds for α < 0;

(2.2) Dα
t f(t) :=

1
Γ(m− α)

dm

dtm

∫ t

0

f(s)− f(0)
(t− s)α−m+1

ds for α ≥ 0,

where m is the first integer greater than or equal to α. The relation (2.1) defines
a fractional integral and (2.2) gives a fractional derivative. The last one has many
interesting properties:

(2.3) Dα
t tγ =

Γ(1 + γ)
Γ(1 + γ − α)

tγ−α, γ > −1, 0 ≤ α < 1;

(2.4) Dn
t Dα

t f(t) = Dn+α
t f(t), n ∈ IN;

(2.5) Dα
t D−α

t f(t) = f(t), D−α
t Dα

t f(t) 6= f(t);

(2.6) Dα
t (fg)(t) =

∞∑

i=0

(
α
i

)
Dα−i

t f(t)Di
tg(t),

where Di
t =

d

dt
◦ d

dt
◦ · · · ◦ d

dt
(i times).

If f is an analytical function then

(2.7) f(t) =
∞∑

i=0

Eα(t)Dαi
t f(t),

where Eα(t) is the Mittag-Leffler function,

(2.8) Eα(t) :=
∞∑

j=0

tαj

Γ(1 + αj)
.
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3 Fractional differential calculus on manifolds

Let M be an n-dimensional differential manifold, (U, xi) a local coordinate system on
M and U0 = {x ∈ U | 0 ≤ xi ≤ bi, i = 1, 2, . . . , n}.

For a function f : U0 → IR we define the fractional derivative with respect to xi:

(3.1) Dα
xif(x) :=

=
1

Γ(m− α)
Dm

xi

∫ xi

0

f(x1, . . . , xi−1, s, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn)
(xi − s)α−m+1

ds,

where Dm
xi =

∂

∂xi
◦ ∂

∂xi
◦ · · · ◦ ∂

∂xi
(m times), i is fixed, α ≥ 0.

In particular we have, for α ∈ (0, 1), γ > −1,

Dα
xi(xi)γ =

Γ(1 + γ)
Γ(1 + γ − α)

; Dα
xi

xj

Γ(1 + α)
= δj

i .

Let Dxi :=
∂

∂xi
, i = 1, 2, . . . , n, denote the local base of the module of vector fields

XU (M) and let dxi, i = 1, 2, . . . , n, be the local base of the 1-forms D1
U (M). Using

(3.1) and the previous relations, we get
Proposition 3.1. Let (U, xi),

(
U, xi

)
be two local coordinate systems such that

U ∩ U 6= f¡ and

(3.2) xi = xi(x1, x2, . . . , xn), rang
(

∂xi

∂xi

)
= n,

the corresponding coordinate transformation. The following relations hold:

(3.3)

dxi = J i
j(x, x)dxj , where J i

j(x, x) = Dxj xi;

Dα
xj =

α

J i
j(x, x)Dα

xi , where
α

J i
j(x, x) = Dα

xj xi;

J i
j(x, x)

α

J
j
h(x, x) = δi

h.

A fractional vector field on U ⊂ M is an object of the form

α

X =
α

X
iDα

xi , where
α

X
i ∈ FU (M), i = 1, 2, . . . , n.

We denote by
α

X U the module of the fractional vector fields on U .
α

X U is generated
by the operators Dα

xi , i = 1, 2, . . . , n. If c : x = x(t), t ∈ I is a parametrized curve in
U then the fractional tangent field of c is given by

(3.4)
α
x (t) =

1
Γ(1 + α)

Dα
t xi(t)Dα

xi .

Remark 3.1. Under a change of local coordinate systems (3.2) we have

(3.5)
α

X i =
α

J
i
j(x, x)

α

X
j .
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Remark 3.2. To each fractional vector field
α

X we may associate a fractional
differential equation of order α given by

(3.6)
α
x(t) =

α

X(x(t)).

The equation (3.6) with an initial condition has a solution.
There are several fractional differential equations (systems) which are studied in

literature because of their chaotic behaviour. Among the famous ones we mention:
the fractional Lorenz system (1963), the fractional Rössler system (1976), Rabinovich
- Fabrikant system (1979), Chua’s system (1983) and so on.

Let us consider the real function U given by

xi
α :=

1
Γ(1 + α)

(xi)α ∈ FU , i = 1, 2, . . . , n.

According to [3] we can define the fractional exterior derivative dα : FU → D1
U by

(3.7) dαf := Dα
xifdxi

α, f ∈ FU .

Remark 3.3. With respect to the change of the local coordinate system (3.2) we
have

(3.8) dαxi =
α

J
i
j(x, x)dαxi.

In order to extend the operator dα on forms we determine the action of Dα
xi on

D1
U . If ω = ωjdxj ∈ D1

U then

(3.9) Dα
xi(ω) = Dα

xi(ωjdxj) =
∞∑

k=0

(
α
k

)
Dα−k

xi (ωj)Dk
xi(dxj).

Since Dk
xi(dxj) = d(Dk

xixj) = 0 for k ≥ 1, it results

(3.10) Dα
xi(ω) = Dα

xi(ωj)dxj .

We now define the operator dα : D1
U → D2

U by

(3.11) dαω := dxi
α ∧Dα

xi(ω), ω ∈ D1
U .

¿From (3.10) and (3.11) we obtain

(3.12) dαω =
α(xi)α−1

Γ(1 + α)
Dα

xi(ωj)dxi ∧ dxj ∈ D2
U .

Remark 3.4. Using (3.12) one verifies that

(3.13) dα ◦ dα = 0.

In this way the classical differential calculus on manifolds may be extended to a
fractional differential calculus taking into account the operators Dα

xi , dα and the

following property of a fractional vector field
α

X =
α

X iDα
xi ∈

α

X U :



The geometry of fractional tangent bundle and applications 5

(3.14)
α

X (fg)(x) =
∞∑

k=0

(
α
k

) α

Xi (x)Dα−k
xi f(x)Dk

xig(x), f, g ∈ FU .

Given
α

X ,
α

Y ∈ α

X U we can still consider a covariant derivative by the formula

(3.15)
α

∇α
X

α

Y =
α

Xi
(
Dα

xi

α

Y
j +

α

Γ j
ik

α

Y
k
)

Dα
xj ,

where
(α

Γ j
ik

)
are the functions defining the coefficients of a fractional linear connection

on M . They are determined by the relations

(3.16)
α

∇Di
αDα

k =
α

Γ j
ikDα

j ,

where Dα
i := Dα

xi , i, j, k = 1, 2, . . . , n.
With respect to a change of local coordinates on M , the coefficients (Γj

ik) change

according to the classical law by using
α

J i
j(x, x) instead of J i

j(x, x).

4 The fractional tangent bundle
αk

T M . Geometrical
structure

Let α ∈ (0, 1) be fixed and two parametrized curves c1, c2 : I → U ⊂ M , 0 ∈ I, with
c1(0) = c2(0) = x0 ∈ U , x0 fixed.

We say that c1 and c2 have a fractional contact of order k ∈ IN∗ in x0 if for any
f ∈ FU

(4.1) Dαa
t (f ◦ c1)

∣∣∣
t=0

= Dαa
t (f ◦ c2)

∣∣∣
t=0

, a = 1, 2, . . . , k

holds.
The conditions (4.1) define an equivalence relation on the parametrized curves

around x0.
An equivalence class [c]αk

x0
is called a fractional k-tangent vector to M in x0. The

set of these classes is the fractional k-tangent space of M in x0 and it will be denoted

by
αk

Tx0M .

By considering
αk

T M :=
⋃

x0∈M

αk

Tx0M and the map

αk
π0 : [c]αk

x0
∈ αk

T M 7→ x0 ∈ M

we obtain a bundle

(4.2)
(

αk

T M,
αk
π0,M

)
.

There is a differential structure on
αk

T (see [2]) and this bundle is called the fractional
tangent bundle of order k of M .
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We make two specifications:
1. If the curve c has the local representation c : xi = xi(t), t ∈ I, i = 1, 2, . . . , n,

in (U, xi), then the class [c]αk
x0

is given by

(4.3) xi(t) = xi(0) +
k∑

a=1

tαa

Γ(1 + αa)
Dαa

t xi(t)
∣∣∣
t=0

, i = 1, 2, . . . , n,

where t ∈ (−ε, ε) ⊂ i.
2. Using the notations

(4.4) xi = xi(0),
aαi
x =

1
Γ(1 + αa)

Dαa
t xi(t)

∣∣∣
t=0

, i = 1, 2, . . . , n; a = 1, 2, . . . , k,

we have the induced local coordinate system on
αk

T M ,

(4.5)

((
αk
π0

)−1

(U); xi,
α

xi,
2α

xi , . . . ,
kα

xi

)
.

We can establish
Proposition 4.1. With respect to a change of local coordinates (3.2) on M the

following relations hold:

(4.6)
Γ((a− 1)α)

Γ(α)

aα

xi = Γ(1 + α)
α

J i
j

(
(a−1)α

x , x

) α

xi +

+
Γ(2α)
Γ(α)

a−1∑

b=1

α

J
i
j

(
(a−1)α

x ,
bα

xj

)
(b+1)α

x +
Γ((a− 1)α)

Γ(α)
aαi
x ,

a = 1, 2, . . . , k; b = 2, 3, . . . , k, b ≤ a, where

(4.7)

α

J i
j

(
(a−1)α

x ,
bα
x

)
= Dα

bα

xj

(a−1)α

xi ,

α

J i
j

(
(a−1)α

x , x

)
= Dα

xj

(a−1)α

xi , i, j = 1, 2, . . . , k.

Remark 4.1. The fractional tangent bundle of order k is a generalization of the
tangent bundle of order k. If αp ∈ (0, 1) is a sequence such that lim

p→∞
αp = 1, then

lim
p→∞

αpk

T M =
k

T M or T kM .

Let us define other geometrical structures and objects on the fractional tangent

bundle
αk

T M .

1. Let παk
αh :

(
x,

α
x, . . . ,

kα
x

)
∈ αk

T M 7→
(

x,
α
x, . . . ,

hα
x

)
∈ αh

T M , h < k, be the

natural projection and

dαπαk
αh :

α

X
(

αk

T M

)
−→ α

X
(

αh

T M

)
,
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the operator given by

(4.8) dαπαk
αh := Γ(1 + α)

[
dxi

αDα
xi +

h∑
a=1

dxi
αDα

aα
x i

]
, h < k,

where the module
α

X
(

αk

T M

)
of fractional vector fields on

αk

T M is generated by Dα
xi ,

Dα
aα
xi

, i = 1, 2, . . . , n; a = 1, 2, . . . , k.

If we consider V αk
αh := ker dαπαk

αh, h = 0, 1, . . . , k − 1, then

(4.9)
V αk

α(k−1) ⊂ V αk
α(k−2) ⊂ · · · ⊂ V αk

α1 ⊂ V αk
0 ;

dαπαk
αh(Dα

xi) = Dα
xi ; dαπαk

αh

(
Dα

bα
xi

)
= Dα

bα
xi

, b = 1, 2, . . . , k.

By Proposition 4.1, V αk
αh has a geometrical character.

2. The following fractional vector fields:

(4.10)

α

Γ = Γ(1 + α)
α

xi Dα
kα

xi

,

2α

Γ = Γ(1 + α)
α

xi Dα
(k−1)α

xi

+
Γ(2α)
Γ(α)

Dα
kα

xi

,

. . .
kα

Γ = Γ(1 + α)
α

xi Dα
α

xi
+

Γ(2α)
Γ(α)

2α

xi Dα
2α

xi

+ · · ·+ Γ((k − 1)α)
Γ(α)

kα

xi Dα
kα

xi

,

are called the Liouville fractional vector fields.

The operator
αk

Λ :
α

X
(

αk

T M

)
→ α

X
(

αk

T M

)
with the properties

(4.11)
αk

Λ(Dα
xi) = Dα

α

xi
;

αk

Λ
(
Dα

aα

xi

)
= Dα

(a+1)α

xi

, a = 1, 2, . . . , k − 1;
αk

Λ
(

Dα
kα

xi

)
= 0

determine a k-fractional tangent structure on
αk

T M .
Using (4.10), (4.11) we obtain
Proposition 4.2. The k-fractional tangent structure has the following properties:

a)
αk

Λ has a geometrical character;

b) rang
αk

Λ = kn,
αk

Λ ◦ αk

Λ ◦ · · · ◦ αk

Λ = 0;

c)
αk

Λ
(

kα

Γ
)

=
(k−1)α

Γ , . . . ,
αk

Λ
(

2α

Γ
)

=
α

Γ,
αk

Λ
(α

Γ
)

= 0.

3. A fractional vector field
αk

S ∈ α

X
(

αk

T M

)
is called a k-fractional spray if

αk

Λ
(

αk

S

)
=

kα

Γ . From the last relation we obtain the expresion of the k-fractional
spray:

(4.12)
αk

S = Γ(1 + α)
α

xi Dα
xi +

k−1∑

b=2

Γ(bα)
Γ(α)

bα

xi Dα
(b−1)α

xi

− Γ(kα)
Γ(α)

Gi

(
x,

α
x, . . . ,

kα
x

)
Dα

kα

xi

.
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There results
Proposition 4.3 The k-fractional spray

αk

S uniquely defines the fractional differ-
ential equations given by:

(4.13)
1

Γ(1 + kα)
D

(k+1)α
t xi(t) + Gi

(
x,Dα

t x, . . . , Γ(1 + (k − 1)α)Dkα
t x

)
= 0.

5 Fractional Euler-Lagrange equations on
αk

T M

Let c : t ∈ [0, 1] 7→ x(t) ∈ U ⊂ M be a parametrized curve on M and

αk
c : t ∈ [0, 1] 7→

(
x(t),

aα
x (t)

)
∈

(
dk
π 0

)−1

(U) ⊂ αk

T M, a = 1, 2, . . . , k

the extension of c to
αk

T M .

Let L :
αk

T M → IR be a fractional Lagrange function. The action of L along the

curve
αk
c is

(5.1) A
(

αk
c

)
=

∫ 1

0

L
(
x(t),

aα
x (t)

)
dt.

Consider a family of curves

cε : t ∈ [0, 1] 7→ x(t, ε) ∈ M

where the absolute value of ε ≥ 0 is sufficiently small such that Im cε ⊂ U ⊂ M ,
c0(t) = c(t), Dα

ε cε

∣∣∣
ε=0

= 0.

The action of L on the curve
αk
cε is given by

(5.2) A
(

αk
cε

)
=

∫ 1

0

L
(
x(t, ε),

aα
x (t, ε)

)
dt,

where
aα
x (t, ε) =

1
Γ(1 + aα)

Dαa
t x(t, ε), a = 1, 2, . . . , k.

The action (5.2) has a fractional extremum if

(5.3) Dα
ε

[
A

(
αk
cε

)] ∣∣∣
ε=0

= 0.

At the same time, the action (5.2) has an extremal value if

(5.4) Dε

[
A

(
αk
cε

)] ∣∣∣
ε=0

, (see [1]).

On the basis of the conditions (5.3) and (5.4) we have the following
Proposition 5.1. a) A necessary condition for the action (5.2) to reach a frac-

tional extremal value is that c : x = x(t) satisfy the fractional Euler-Lagrange equa-
tions:
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(5.5) Dα
xiL +

k∑
a=1

(−1)adαa
t

(
Dα

aα

xi
L

)
= 0, i = 1, 2, . . . , n,

where

(5.6) dαa
t =

a∑

b=1

bα

xi Dα
(b−1)α

xi

; Dα
◦
x i
≡ Dα

xi .

b) A necessary condition for the action (5.2) to reach an extremal value is that
c : x = x(t) satisfy the fractional Euler-Lagrange equations:

(5.7) DxiL +
k∑

a=1

(−1)ada
t

(
Dα

aα

xi
L

)
= 0, i = 1, 2, . . . , n,

where

(5.8) da
t =

a∑

b=1

bα

xi D(b−1)α

xi

; D◦
x i
≡ Dxi .

Examples and applications. 1. Let L :
2α

T IR → IR be the Lagrange function
given by

(5.9) L
(
x,

α
x,

2α
x

)
= −ψ1(x)− 1

2
a1Γ(1 + 2α)

(
α
x
)2

− 1
2
Γ(1 + 4α)

(
2α
x

)2

,

where
dψ1

dx
=: ϕ1(x). The fractional Euler-Lagrange equation associated to L is

(5.10) Γ(1 + 4α)
4α
x +a1Γ(1 + 2α)

2α
x +ϕ1(x) = 0.

If α =
1
2
, the equation (5.10) is

(5.11) ẍ(t) + a1ẋ(t) + ϕ1(x(t) = 0.

It does not admit a classical Lagrangean but it comes from a fractional Lagrangean.

2. Let L :
3α

T IR → IR be the Lagrange function given by

L
(
x,

α
x,

2α
x ,

3α
x

)
= −ψ2(x) +

1
2
a1Γ(1 + 2α)

(
α
x
)2

−

(5.12) −1
2
a2Γ(1 + 4α)

(
2α
x

)2

+
1
2
Γ(1 + 6α)

(
3α
x

)2

and ϕ2(x) :=
dψ2

dx
. The fractional Euler-Lagrange equation associated to L is

(5.13) Γ(1 + 6α)
6α
x +a2Γ(1 + 4α)

4α
x +a1Γ(1 + 2α)

2α
x +ϕ2(x) = 0.
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If α =
1
2
, we obtain the equation

(5.14)
...
x(t) + a2ẍ(t) + a1ẋ(t) + ϕ2(x(t)) = 0

which also does not admit a classical Lagrangean.
3. The homogeneous Bagley-Törvik equation,

(5.15) aD2x(t) + bD3/2x(t) + cx(t) = 0,

where a, b, c ∈ IR, x(0) = 0, D1x(0) = 0, describe the dynamics of a flat rigid body
embedded in a Newton fluid. The equation (5.15) is the fractional differential equation

for the Lagrangean function L1 :
7/4

T IR → IR given by

(5.16) L1

(
x(t),

5/4
x (t),

7/4
x (t)

)
=

c

Γ(9/4)
− bΓ(3)

Γ(3/2)

[
5/4
x (t)

]1/2

− aΓ(3)
Γ(3/2)

[
7/4
x (t)

]1/2

.

For proof we consider the function L :
7α

T IR → IR, given by

(5.17) L
(
x,

5α
x ,

7α
x

)
:=

c

Γ(2 + α)
x1+α − b1

Γ(1 + 2α)

(
5α
x

)2α

− a1

Γ(1 + 2α)

(
7α
x

)2α

,

where a1 = aΓ(3), b1 = bΓ(5/2). The fractional Euler-Lagrange equation associated
to (5.17) is the following:

(5.18) Dα
x L− d5α

t

(
Dα

5α
x

L
)
− d7α

t

(
Dα

7α
x

L
)

= 0.

Using the relation (2.3), we have

(5.19)

Dα
x L =

c

Γ(1 + α)
Dα

x (x(t))1+α =
cx

Γ(1 + α)
· Γ(2 + α)

Γ(1)
= cx(t);

Dα
5α
x

L = − b1

Γ(1 + 2α)
Dα

5α
x

(
5α
x (t)

)2α

= − b1

Γ(1 + α)

(
5α
x (t)

)α

;

Dα
7α
x

L = − a1

Γ(1 + 2α)
Dα

7α
x

(
7α
x (t)

)2α

= − a1

Γ(1 + α)

(
7α
x (t)

)α

;

d5α
t

( α

D5α
x

L
)

= −b1
6α
x (t); d7α

t

(
Dα

7α
x

L
)

= −a1
8α
x (t).

¿From (5.18), with (5.19), we obtain the equation

(5.20) a1
8α
x (t) + b1

6α
x (t) + cx(t) = 0.

For α =
1
4
, the relation (5.20) leads to the equation

(5.21) a1
2
x(t) + b1

3/2
x (t) + cx(t) = 0

which is equivalent to (5.15). Consequently, (5.15) is the fractional differential equa-
tion associated to L1 given by (5.16).
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6 Conclusions

Starting from the idea that the fractional techniques and methods require a fractional
geometrical model we consider the fractional tangent bundle of order k. On this tan-
gent bundle are defined some objects and structures having a geometrical character.
We also consider fractional Lagrangeans on that bundle.

As the examples show there are some equations which do not come from a varia-
tional principle, but they can be described as the Euler–Lagrange equations of frac-
tional Lagrangeans.

Most approaches of the fractional order systems in literature are studied with
numerical methods. A logical target for us is to analyse the behaviour of a fractional
dynamics including geometrical methods. Related results can be found in [4, 5].
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