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Abstract

In this paper we established the condition for a curve to satisfy
stochastic generalized fractional HP (Hamilton-Pontryagin) equations.
These equations are described using Itô integral. We have also con-
sidered the case of stochastic generalized fractional Hamiltonian equa-
tions, for a hyperregular Lagrange function. From the stochastic ge-
neralized fractional Hamiltonian equations, Langevin generalized frac-
tional equations were found and numerical simulations were done.
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1 Introduction

J.M. Bismut was the first one who introduced concepts of stochastic ge-
ometric mechanics, in his article from 1981, when he defined the notion of
”stochastic Hamiltonian system”. He showed that that the stochastic flow of
certain randomly perturbed Hamiltonian systems on flat spaces extremizes
a stochastic action, and using this property, he proved symplecticity and the
Noether theorem for stochastic Hamiltonian systems. Since then, there has
been a need in to find out tools and algorithms for the study of this kind
of systems with uncertainty. Bismut’s work was continued by Lazaro-Cami
and Ortega ([11], [12]), in the sense that his work was generalized to mani-
folds. Stochastic Hamiltonian systems on manifolds extremize a stochastic
action on the space of manifold valued semimartingales, the reduction of
stochastic Hamiltonian system on the cotangent bundle of a Lie group, a
counter example for the converse of Bismut’s original theorem. Very im-
portant in many scientific domains is fractional calculus: fractional deriva-
tives, fractional integrals, of any real or complex order. Fractional calculus
is used when fractional integration is needed. It is used for studying sim-
ple dynamical systems, but it also describes complex physical systems. For
example, applications of the fractional calculus can be found in chaotic dy-
namics, control theory, stochastic modelling, but also in finance, hydrology,
biophysics, physics, astrophysics, cosmology, economics and so on ([2], [4],
[5], [9], [10]). But some other fields have just started to study problems from
fractional point of view. It is very fashionable to study the fractional prob-
lems of the calculus of variations and Euler-Lagrange type equations. The
most famous fractional integrals are Riemann-Liouville, Caputo, Grunwald-
Letnikov and the most frequently used is the Riemann-Liouville fractional
integral. The study of Euler-Lagrange fractional equations was continued by
Agrawal ([1], [6], [8]) that described these equations using the left, respec-
tively right fractional derivatives in the Riemann-Liouville sense. Standard
multi-variable variational calculus also has some limitations. But in [13],
C.Udriste and D. Opris showed that these limitations can by broken using
the multi-linear control theory. In [7] the novel concepts of fractional action-
like variational approach (FALVA) with time-dependent fractional exponent
and exponential time-dependent term is introduced. In this paper, we re-
strict our attention to stochastic generalized fractional Hamiltonian systems
characterized by Wiener processes and assume that the space of admissible
curves in configuration space is of class C1. Random effects appear in the
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balance of momentum equations, as white noise, that is why we may consider
randomly perturbed mechanical systems. It should be mentioned that the
ideas in this paper can be readily extended to stochastic Hamiltonian sys-
tems driven by more general semimartingales, but for the sake of clarity we
restrict ourselves to Wiener processes. In this paper we use the generalized
left fractional Riemann-Liouville integral defined as a mixture of the fractal
action from physics and the discounted action at rate ρ, given in [7]. Within
this context, the results of the paper are as follows:

1. The paper presents the results from [3] which show that almost surely
that a curve satisfies stochastic HP equations if and only if it extremizes a
stochastic action. Suggestive examples and numerical simulations are done.

2. Generalized fractional HP equations are described using the general-
ized fractional Riemann-Liouville integral and the fractional Itô integral;

3. Langevian type stochastic generalized fractional equations are obtained
in the case of a hyperregular Lagrange function. Relevant examples and
numerical simulations are presented.

The paper is organized as follows: In Section 2, Hamilton-Pontryagin
(HP) principle is given to the stochastic setting to prove that a class of me-
chanical systems with multiplicative noise appearing as forces and torques
possess a variational structure. For a hyperregular Lagrange function, we
get the stochastic Hamiltonian equations that lead to Langevin equations.
Examples and numerical simulations for the Lagrangian which describes the
Samuelson model from economics [5] are given. In Section 3, we extend the
generalized fractional Hamilton-Pontryagin (HP) principle to the stochastic
setting to prove that a class of mechanical systems with multiplicative noise
appearing as forces and torques possesses a variational structure. For a hy-
perregular Lagrange function, we obtain the stochastic generalized fractional
Hamiltonian equations that lead to Langevin generalized fractional equa-
tions. For a Lagrange function, defined on IR2, the corresponding general-
ized fractional Langevin equations are simulated. The generalized fractional
Hamiltonian and the Lagrangian description are joined together to get the
generalized fractional HP system.

2 Stochastic HP mechanics

In this section a variational principe is introduced for a class of stochastic
Hamilton systems on manifolds. The stochastic action is a sum of the classical
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action and stochastic integral. The key feature of this principle is that one can
recover stochastic Hamilton equations for these systems. Roughly speaking,
this is accomplished by means of taking variations of this action within the
space of curve only (not the probability space) and imposing the condition
that this partial differential of the action must be zero.

Let a paracompact, configuration manifold Q and J1(IR,Q) = IR × TQ,
T ∗Q, the associate bundle of Q. Let (Ω,P, P ) be a probability space and
(w(t),Ft)t∈[a,b], where [a, b] ⊂ IR, w(t) is a real-valued Wiener process and Ft

is the filtration generated by the Wiener process [3].
The paper adopts an HP viewpoint to develop a Lagrangian description of

stochastic Hamiltonian systems [3]. The HP principle unifies the Hamiltonian
and Lagrangian descriptions of mechanical system. The classical HP action
integral will be perturbed using deterministic function γ : Q → IR.

We consider the Lagrangian L : J1(IR,Q) → IR. In the stochastic context
the HP principle states the following critical point condition on J1(IR,Q)⊕
T ∗Q for stochastic HP action integral given by [3]:

A(q, v, p)=

∫ b

a

[L(s, q(s), v(s))+< p(s),
dq

ds
−v(s) >]ds+

∫ b

a

γ(q(s))dw(s)

(1)

where

A : Ω× C(PQ) → IR

C(PQ) = {(s, q, v, p) ∈ C0([a, b], PQ)|q ∈ C1([a, b], Q), q(a) = qa, q(b) = qb},

[a, b] ⊂ IR, qa, qb ∈ Q.
The action integral in the above principle consists of one Lebeque integral

with respect to s and Itô stochastic integral with respect to w. The action
is random; i.e. for every sample point ω ∈ Ω we will obtain a different time-
dependent Lagrangian system. We will use the following notation q(ω, s) =
q(s), v(ω, s) = v(s), p(ω, s) = p(s). The HP path space is a smooth infinite
dimensional manifold. One can show that is tangent space at c = (q, v, p) ∈
C([a, b], q1, q2) consists of maps w = (q, v, p, δq, δv, δp) ∈ C0([a, b], T (PQ))
such that δq(a) = δq(b) = 0 and q, δq are of class C1. Let (q, v, p)(·, ε) ∈
C(PQ) denote a one-parameter family of curves in C that is differential with
respect to ε. Define the differential of A as

dA(δq, δv, δp) =
∂

∂ε
A(ω, q(s, ε), v(s, ε), p(s, ε))|ε=0
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where

δq(s) =
∂

∂ε
q(s, ε)|ε=0, δq(a) = δq(b) = 0,

δv(s) =
∂

∂ε
v(s, ε)|ε=0, δp(s) =

∂

∂ε
p(s, ε)|ε=0.

In terms of this differential one can state the following critical point con-
dition:

Theorem 1. [3] Let L : J1(IR,Q) → IR be a Lagrangian on J1(IR,Q) of
class C2 with respect to t, q, v and with the globally Lipschitz first derivative
with respect to t, q and v. Let γ : Q → IR be a class C2 function and
with the globally Lipschitz first derivative. Then almost certainly a curve
c = (q, v, p) ∈ C(PQ) satisfies the stochastic HP equations:

dqi = vids,

dpi =
∂L

∂qi
ds+

∂γ

∂qi
dw(s)

pi =
∂L

∂vi
, i = 1..n

(2)

if and only if it is a critical point of the function A : Ω× C(PQ) → IR, i.e.
dA(c)=0.

Let L : J1(IR,Q) → IR be a Lagrangian on J1(IR,Q), hyperregular, that

means det

(

∂2L

∂vi∂vj

)

6= 0.

From (2) the following propositions are obtained:
Proposition 1. (Stochastic Hamilton equations). The equations

(2) are equivalent to the following equations:

dqi =
∂H

∂pi
ds,

dpi = −
∂H

∂qi
ds+

∂γ

∂qi
dw(s), i = 1..n

(3)

where H = piv
i − L(t, q, v).

The equations (3) represent Lagevin equations.

Proposition 2. If L =
1

2
gijv

ivj, where gij are the components of a

5



metric on the manifold Q, equations (2) take the form:

dqi = vidt, dpi = −gijv
jds+

∂γ(q)

∂qi
dw(s),

dvi = −Γi
jkv

jvkds+ gij
∂v(q)

∂qj
dw(s), i, j = 1..n, ,

(4)

where Γi
jk are Cristoffel coefficients associated to the considered metric.

The equations (3) become:

dqi = gijpjds,

dpi =
1

2

∂gkl

∂qi
pkplds+

∂γ(q)

∂qi
dw(s).

(5)

Proposition 3. If L : J1(IR, IRn) → IR is given by:

L =
1

2
δijv

ivj − V (q), q ∈ IRn, (6)

the equations (2) take the form:

dqi = vids,

dpi = −
∂V

∂qi
ds+

∂γ

∂qi
dw(s), pi = δijv

j.
(7)

The equations (3) become:

dqi = δijpjds,

dpi = −
∂V (q)

∂qi
ds+

∂γ(q)

∂qi
dw(s).

(8)

Proposition 4. If L : J1(IR, IRn) → IR is given by:

L = e−ρsL(q, v), q ∈ IRn (9)

the equations (2) take the form:

dqi = vids,

dpi = e−ρs ∂L

∂qi
ds+

∂γ(q)

∂qi
dw(s),

pi = e−ρs ∂L

∂vi
.

(10)
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Proposition 5. (Samuelson. [5]) If L : J1(IR, IR2) → IR is given by:

L = −
1

2
e−ρs(v2 + 2avq + q2), q ∈ IR, (11)

the equations (2) take the form:

dq = vds,

dp = −e−ρs(av + q)ds+
∂γ(q)

∂qi
dw(s),

p = −e−ρs(v + aq).

(12)

The equations (12) become:

dq = −(aq + eρsp)ds,

dp = ((a2 − 1)e−ρsq + ap)ds+
dγ

dq
.

(13)

If V (q) = q2, the Euler scheme for (13) is:

q(n + 1) = q(n)− h(aq(n) + eρnp(n))

p(n + 1) = p(n) + h((a2 − 1)e−ρnq(n) + ap(n)) + q(n)G(n), n = 0..N − 1,

(14)

where T > 0, h =
T

N
, N > 0, G(n) = w((n + 1)h) − w(nh) and q(n) =

q(ω, nh), p(n) = p(ω, nh), ρ ∈ (0, 1), a ∈ (−1, 1).
For ρ = 0.003, a = 0.03, h = 0.001 using Maple 13, the orbit (n, q(nh))

is represented in Fig 1 and (n, q(ω, nh)) in Fig 2:

Fig 1. (n, q(nh)) Fig 2. (n, q(ω, nh))
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In Figures 3 and 4 we can visualize the orbits (n, p(nh)), (n, p(ω, nh)):

Fig 3. (n, p(nh)) Fig 4. (n, p(ω, nh))
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Figures 5 and 6 represent the orbits (q(nh), p(nh)) and (q(ω, nh), p(ω, nh)):

Fig 5. (q(nh), p(nh)) Fig 6. (q(ω, nh), p(ω, nh))
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3 Stochastic generalized fractional HP

In this section a generalized variational principle is introduced for a class
of stochastic generalized fractional Hamiltonian systems on manifold. We
use the generalized left fractional Riemann-Liouville integral ([7]) defined as
a mixture of the fractal action from physics and the discounted action at rate
ρ. Let f : IR → IR be an integrable function, α : IR → IR a function of class
C1. The generalized left fractional Riemman-Liouville integral is given by:
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t0I
α
t f(t) =

∫ t

t0

1

Γ1(α(s− t))
f(s)(t− s)α(s−t)−1eρ(s−t)ds (15)

where

Γ1(α(s− t)) = Γ(α(z))|z = s− t,Γ(α(z)) =

∫ ∞

0

(s− t)α(z)−1e−(s−t)ds,

is the modified Euler Gamma function.
If α(z) = a = const., 0 < a ≤ 1, ρ = 0, from (15) we obtain the left

fractional Riemman-Liouville integral ([6], [7], [8]). In fact, the generalized
left fractional Riemann-Liouville integral is a generalization of the single time
Stieltyes integral ([13]).

In (15), s is the intrinsec time and t is the observer time, t 6= s. Let
g : IR → IR be the function:

gt(s) =
1

Γ1(α(s− t))
e(α(s−t)−1)ln|t−s|+ρ(s−t), t 6= s. (16)

We consider L : J1(IR,Q) → IR and γ : Q → IR. In the stochastic context
the HP principle states the following critical point condition on J1(IR,Q)⊕
T ∗(Q) for stochastic HP generalized fractional action given by:

A
α(q, v, p, t)=

∫ t

t0

[L(s, q(s), v(s))+< p(s),
dq

ds
−v(s) >]gt(s)ds+

+

∫ t

t0

γ(q(s))gt(s)dw(s).

(17)

The first integral in (17) is a Lebeques integral with respect to s and the
second one is an Itô integral.

Using Theorem 1, we get:
Theorem 2. If L : J1(IR,Q) → IR and γ : Q → IR satisfy the hypothesis

from Theorem 1, then almost certainly a curve c = (q, v, p) ∈ C(PQ) satisfies
the stochastic HP equations with intrinsec and observer times:
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dqi = vids,

dpi = [
∂L

∂qi
− pi(

dα(s− t)

ds
ln|t− s|+

α(s− t)− 1

s− t
) + ρ−

−
1

Γ1(α(s− t))

dΓ1(α(s− t))

ds
]ds+

∂γ(q)

∂qi
dw(s),

pi =
∂L

∂vi
, i = 1..n, t 6= s.

(18)

From (18) we obtain:
(i) If α(z) = 1 and ρ = 0 then equations (2) are obtained;
(ii) If α(z) = a = const., 0 < a ≤ 1, ρ = 0 then the following relations

are deduced from (18):

dqi = vids,

dpi = (
∂L

∂qi
− pi

a− 1

s− t
)ds+

∂γ(q)

∂qi
dw(s),

pi =
∂L

∂vi
, i = 1..n, t 6= s.

(19)

The equations (19) represent the stochastic fractional equations.
If L : J1(IR,Q) → IR is hyperregular, using (18) the following proposi-

tions hold:
Proposition 6. (Stochastic generalized fractional Hamilton equations.)

Equations (18) are equivalent with the equations:

dqi =
∂H

∂pi
ds,

dpi = (−
∂H

∂qi
− pih(s, t))ds+

∂γ(q)

∂qi
dw(s),

(20)

where

H = piv
i − L(s, q, v),

h(s, t) =
dα(s− t)

ds
ln|t− s|+

α(s− t)− 1

s− t
+ ρ−

1

Γ1(α(s− t))

dΓ1(α(s− t))

ds
.

(21)
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The equations (20) represent the generalized fractional Langevin equations.

Proposition 7. If L =
1

2
gijv

ivj, where gij are the components of a

metric on the manifold Q, then equation (18) takes the form:

dqi = vids,

dvi = −(Γi
jkv

jvk − h(s, t)vi)ds+ gij
∂γ(q)

∂qj
dw(s), i, j = 1..n,

(22)

where Γi
jk are Cristoffel coefficients associated to the considered metric and

h(s, t) is given by (21). The equations (20) become:

dqi = gijpjds,

dpi = (
1

2

∂gkl

∂qi
plpk − h(s, t)pi)ds+

∂γ(q)

∂qi
dw(s), i = 1..n,

(23)

where h(s, t) is given by (21).
The equations (23) can be used for generalized fractional motion of rela-

tivistic particle with noise ([7]).
Proposition 8. If L : J1(IR, IR) → IR is given by:

L(q, v) =
1

2
v2 − V (q) (24)

where V : IR → IR and γ : IR → IR, then equations (23) are given by:

dq = pds,

dp = (−
dV

dq
− h(s, t)p)ds+

dγ(q)

dq
dw(s).

(25)

If V (q) = cos(q), γ(q) = sin(q), the Euler scheme for (25) is given by:

q(n+ 1) = q(n) + kp(n))

p(n + 1) = p(n) + k(sin(q(n))− h(nk, t)) + cos(q(n))G(n), n = 0..N − 1,

where T > 0, k =
T

N
, N > 0, G(n) = w((n+ 1)h)− w(nh) and
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h(nk, t) = α1(nk, t)ln|t− nk|+
α(nk − t)− 1

nk − t
+ ρ−

−
1

Γ1(α(nk − t))
Γ1(α(nk − t)),

α1(s− t) =
dα(s− t)

ds
,Γ1(α(s− t)) =

dΓ1(α(s− t))

ds
.

For α(s − t) = a, a = 0.6, k = 0.001, t = 0.8 using Maple 13 the orbit
(n, p(nk)) is represented in Figure 7 and the orbit (n, p(ω, nk)) is represented
in Figure 8:

Fig 7. (n, p(nk)) Fig 8. (n, p(ω, nk))
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Figure 9 displays the orbit (q(nk), p(nk)) and Figure 10 displays the orbit
(q(ω, nk), p(ω, nk))

Fig 9. (q(nk), p(nk)) Fig 10. (q(ω, nk), p(ω, nk))
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4 Conclusions

In this paper we have described the stochastic generalized fractional HP
principle, using the classical stochastic HP principle [3]. Using a hyperregular
Lagrange function, Langevin-type generalized fractional equations were illus-
trated. We have done the numerical simulations for the case of a Lagrange
function defined on IR2. In our future papers we will study the stochastic
stability of the obtained equations al well as the description of the credibility
generalized fractional HP principle.
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