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Abstract

This work develops the geometry and dynamics of diamond-type crystals
with impurities or defects and symmetry from the perspective of Lagrangian
mechanics. We begin by formulating continuous-discret network for diamond-
type crystals, then we formulate the continuous-discret Lagrange-d’Alembert
principle, Noether’s theorem and momentum equation for diamond-type crystals
with impurities are given. Several detailed examples are given to illustrate the
theory.
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1 Introduction

The diamond-type crystals are among the most widely studied crystals in literature
and the usual theories supply results in good agreement with the experiments [5].
These theories are formulated in terms of the invariants of some representations of
the space group O [2]. In [6] the case of crystals with impurities is studied and consid-
eration of a distribution of lattice group, described by the nonintegrable distribution
of lattice bases. A broad overview of the paper is as follows. We begin by describ-
ing continuous-discret network diamond-type crystal, using some representations of
the space group O} [2]. The methodology from [1], is adapted for continuous-discret
mechanics [3],[4], and continuous-discret Lagrange-d’Alembert principle for diamond-
type crystals is given. The description of the distorted crystal structure can be realized
by considering a constraint S. The equations of motions can be written in terms of the
usual Euler-Lagrange operator. Following this, we add the hypothesis of symmetry
and we develop evolution equation for the momentum that generalizes the usual con-
servation laws associated to a symmetry group. Several detailed examples are given
to ilustrate the theory.
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2 Continuous-discret network for diamond-type crys-
tals

Let Z be the ring of integers and let N be the set of all natural numbers. The metric
space (Dy, d), where

3

(2.1) Do = {n = (no,n1,m2,n3) € Z*\ng +ny +ny +n3 € {0,1}}
and

3
(2.2) §:Doo x Dog —— N, d(n,n') = |n; — nl

i=0

is a discret parametric space for the , infinite” crystal having the structure of diamond
[2]. The group of all isometries of the space (Do, d) is isomorphic to the space group

O] [1]. For each n € Do, we consider the neighbours order k of n, that is the elements
of the set

(2.3) VF) (n) = {n' € D|d(n,n') = k}.

In particular

(2.4) V(l)(n) ={n*|a=0,1,2,3},
where
(25) n® =n + E(n)e’l E(TL) — (71)n0+n1+n2+n3

{e®} is the canonical basis of R*. By considering

(n*)? =n® =n+e(n)e” +e(n®)e’, a,8€{0,1,2,3}, a#p

(2.6) n® =n, n* £nf* a#p,

we obtain the second neighbours of n

(2.7) VP (n) = {n"| a # B a,B €{0,1,2,3}}
and the third neighbours of n

(2.8) VO (n) = {n*Ma#£B#v a,8,7€{0,1,2,3}}

Let N eN , N > 3, be a fixed natural number and let Zy be the quotient space
Z/(NZ). We will obtain a parametric space for the , finite” crystal having the struc-
ture of diamond by using the set

(2.9) D = {n = [ng,n1,n2,n3] € (Zn)*|no + n1 +ny +ns € {0,1}}

If [a,b] CR is an interval, then the set R = [a, b] x D will be called the continuous-
type network for diamond-type crystals. Let ¢ : R — R™ , (m > 1), be a C'-function
(with respect to t € [a,b]) and
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dq(t,n)
dt

q(t,n) = (¢'(t,n)), i=1T,m, 4 (t,n) = , (t,n) eR

¢*(t.n) = q(t,n®) = q(t,n) , n® € V() 0™ (t,n) = 0™ (t,n°%) = q(t,n) ,
(2.10) n*? e V).
The space of functions

b
(2.11) L*(R)={q:R — Rm|/ Z 8:i;q' (t,n)q’ (t,n) < oo}

w nED

with the canonical scalar product is a Hilbert space. Let the space
(212)  Q={ge L2R)lala.n) = a1(n) , q(b,n) = @2(n) , ¥n € D)},

with g1, ¢o fixed. The tangent space to 2 in g € Q) is given by

(2.13) T,(Q) ={n: R — R"n(a,n) =0, n(b,n) =0, Ve D},
where
(2.14) n(t,n) = 7dq(2’;’n) B

and q(e,t,n) € Q, q0,t,n) = q(t,n) ,e € I C R, 0 € I. For a C'-function
F: Q — R, the variation 0F is

(2.15) SF T, 0 — R, 6F(n) = %’;E))

e=0

The element g € Q is called a critical point for F if 0F (n) =0, Vi € T,Q.

3 Continuous-discret Lagrange-d’Alembert
principle for diamond-type crystals
Consider the sets
Q' ={¢*(t,n), g€, a€{0,1,2,3}, (t,n) € R}
(3.1) 02 ={¢*(t,n), g€, a#Ba,fe{0,1,2,3}, (t,n) € R}

Q={a(t,n), ¢eQ, (t,n) e R}

and the C'-function L : R x Q x Q! x Q%x {)—)R, given by
(3.2) L(t,n) = L(t,n,q(t,n),¢"(t,n). ¢ (t,n). 4 (t,n)) , (t,n) € R.

The functional
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b
(3.3) A(q) :/ZL(t,n)dt

is called the action of L with respect to g € €.
Theorem 3.1 [4] (First variation formula). The variation 0.4(q) of the action
Alq) is
b
| ¥ B ge 0.

neD

A
w
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=
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Il

a

(3.6) L(t,n) = L(t.n) + Y _ L(t.n*) + > L(t,n"?),

From theorem 3.1 we deduce
Theorem 3.2 (Discret continuous variation principle). An element g € () is a
critical point for A(q) if and ouly if

dL(t,n) d (af(t,n)

(3.7) gALn) >:0,V(t,n)€R,i:1,—m.
0q (t,n)

dgi(t,n) dt

Example. The Lagrange function of the atoms of the crystal with respect to their
equilibrum positions is given by [2],[5]

3
1 i g 1 ) .
Lit,n) = Fmdya (t,n)q’ (t,n) — 5 > Gijad™ (t,n)g?* (t,m)—
a=0
(3. o -
- 5 Z Qsl]aﬁqlaﬁ(t,n)qjaﬁ(t,n) 3 (t7n) € 7?'7 Z,J = 1:273:

a,B=0
a#p

where
Gija = Pjia = const , Pijas = Pjiap = const.

From (3.7) we obtain

Pen) o 3 jap
a=0 a, B =0
a#B

The system of equations (3.9) corresponds to the system of equations used in lattice
dynamics of diamond-type crystals (the model of Born-von Karman).
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For the study of the dynamics in crystals it is useful to introduce some so-called
motions of order a and af. Let f¢ : R x O x Q' x 0°x Q—R, a = 1,p, be a

C'-function with respect to t € [a,b] , g € Q, ¢® € Q' , ¢*° € Q% , ge(). We put

(810)  f(tm) = f(tm,q(tn), ¢ (tn), ¢ (En), @ (8,0)) , (tn) € R

and suppose that

af(t,n)
11 | = =0,1,2,3;
(3.11) rang‘aqm(tm) p<m,a=0123;
af(t,n) || _ _ _
(312) rangHW —p<m,a,ﬂ—0,1,2,3,a7ﬁﬁ,
(3.13) rang || —— U0} p<m
0q (t,n)

Let us consider the set
(3.14)

S ={(a(t,n),q"(t,n),q*(t,n),d (t,n)) € @ x Q' x Px Q[f*(t,n) =0, a =T, p}

For a generic element g € 2, for S, let n € T, be the tangent vector to ) satisfying
the conditions

8fa(t7n) )

(3.15) WU

(t,n)=0,a=1,p, a€{0,1,2, 3}, fixed.
n is called the wvirtual variation of the order « for the system ({2, L,S), where L is
given by (3.2) and S is given by (3.14).

The Lagrange-d’Alembert principle of order « is the following: an admissible
element ¢ € € is called a motion of the order a for the system (,L,S) if
[E]i(L)n'(t,n) =0, ¥(t,n) € R, for all virtual variations of the order «.
Proposition 3.3. The motion of the order « is given by
afe(t,n)

(3.16) Ei(L)(t,n) = Mgm i=1,m,

ft,n)=0,a=1,p, afixed, (t,n) € R.
The elements n € T7,() satisfying the conditions

8fa(t= n) 1 _ _
(317) W’ﬂ (t,n)—O, (l—l,p, a;éﬂ,ﬁxed
are called the virtual variations of the order af for the system ({2, L,S).
The Lagrange-d’Alembert principle of order af is the following: an admissi-
ble element ¢ € € is called a motion of the order af for the system (2, L,S) if
[E];(L)ni(t,n) = 0, ¥(t,n) € R, for all virtual variations of the order af.
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Proposition 3.4. The motion of the order af is given by

af afa(t/n)
“ 9qieb(t,n) ’

(3.18) E;(I)(t,n) =

1=1,m,

ft,n)=0,a=1,p, o,ffixed, (t,n) € R.
The elements n € T,() satisfying the conditions
a.fa(t7 n) 7 T -

n(t7n):O7a: 7p7

(3.19) .
a4 (t,n)

are called the virtual variations for (Q, L, S).

The Lagrange-d’Alembert principle is: an admissible element g €  is called a
motion for the system (€0, L,S) if [E];(L)n'(t,n) = 0, V(t,n) € R, for all virtual
variations.

Proposition 3.5 [3]. The motion is given by

(3.20) Bi(T(tn) = p 20y T,
ft,n)=0, a=1,p ,(t,n) €R.

4 Constraint distribution on the space
Qx Q' x PPxQ

The description of the distorted crystal structure can be realised by considering a
constraint S given by (3.14). If we choose the affine constraints of the form

(41) fa(t7 17) = qaa (t7 17) + A[rlaqra(t7 17) B ’yaa(t n):
where
(4.2) AP(t,m) = A (q(t,m)) , 4" (1) = 7 (q(t,m)),

a=1,p, r=p+1,m, a€ {0,1,2,3}, fixed, then from the Lagrange-d’Alembert
principle of order a we get.
Proposition 4.1. The motion of the order « is given by

(4.3) E (L) = A7*(t,n)Eo(L)  a=Tp,r=p+1Lm,

q**(t,n) + Ar(t,n)q¢"*(t,n) —y**(¢t,n) =0, (t,n) € R.

Now we define the constrained Lagrangian of order a, L., by substituting the
constraints (4.2) into the Lagrangian (3.2).

Le(t,n) = L(t,n,q(t,n), —A2*(t,n)q"*(t,n) + v**(¢t,n), ¢"*(t,n),

(4.4) ¢’(t,n), @°(t,n), ¢ (t.n))
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Theorem 4.2. The equations of the motion of order a are

_ S OL(t,n®
E(T0) — A(tn)ES(TS) = [ (t,n®) — Az (t,n)] S
(45) dq e (t,n)
' OL(t,n) OL(t,n)
Baa s ax .
+ rs (t7n)q (t7n) 6qaa(t, n) Tr (t; n) aqaa (t,n)
4" () + AL (1, n)g™ (t,n) — 7" (t,n) =0, a=T,p, r,s = pF L,
where
0AY(t,n) OA*(t,n)
aq ba o S
(46) B'r's (t7n) A ( ) 8(] (t n) 5q7’(t,n) I’
a,yaa (t7 n) b a,yaa (t7 n)
4. aa = ——" - — A, n)——"=,
( 7) rY’r‘ (t7n) 6qr(tln) T (t;n) 5qb(tln) 3
— aLp . 9(Lc(t,n) + Lo(t,n®))
Ex(le) = [g 8q8 (¢, n)
(4.8) o7
_ ZB: a(LC (ta n) + LC(t7 nﬁa)) _ i aLC(t7 T])
By = 9q*P7(t, ) dt \ 89" (t,n)
B # y
Let the affine constraints of the form
(4.9) FU(tn) = q"*P (t,n) + AZ*P(t,n)q % (t,n) — 4P (t,n),
where
(4.10) AP (t,m) = AzP(q(t,u)) , P (t,n) = 7" (q(t,n))

=1p,r=p+1,m, a,B€{0,1,2,3}, a# f3 fixed

From the Lagrange-d’Alembert principle of order af we obtain
Proposition 4.3. The motion of the order a/f is given by

(4.11) E. (L) = A*P(t,n)E,(L) a=T,p, r=p+1,m,

(412) P (tn) + ATB(t,n)g" B (t,n) — " (t,m) = 0, (t,n) € R.

Define the constrained Lagrangian of order af , L¢, by substituting the con-

straints (4.12) into the Lagrangian (3.2):
(@13) Lo(t,n) = L(t,n,q(t,n),q7 (t,n), —Az*5 (t,n)q"*" (t,n)+
4.13 .

+ "t n),¢" P (tn), ¢ (¢, ), 4 (¢,)).

Theorem 4.4. The equations of the motion of order af are



80 D.Opris and 1.D.Albu

OL(t,n)
_ jaaB af _ aaf afBy _ paaf I S
Br(Le) = 420 (6:m) B (Lo) = [A3°7 (1:n"7) = 420 (6. m)] 5 S
AL(t,n) OL(t,n)
, aaf saf e S aaf3 [ S A
(4.13) +Bi3P(t,n)q (t’n)aqmﬁ(t,n) + % (t;n)aqaaﬁ(t7n)7

q"*%(t,n) + APP(t,n)q" (8, n) — 4P (t,n) =0, a=T,p, r,s =p+ L,m,

where
QAP (t,n)  OAXB(t,n)
4.14 BB (t,n) = AP(t, T
( ) rs (t;n) T (t;n) 3qb(t,n) aqr(t,n)
Oy B (t,n) 905 (t,n)
aaf3 _ ’ _ pbap > 7
(415) 77“ (tan) - aqr(t,n) Ar (t/n) qu(tﬂz) 3
— OLo(tn) <~ O(Le(tn) + Lo(t,n))
af3 — _ _
BT = Futm 2T o
(4.16)
_ 23: a(LC(tn) + LC(t7n’ya)) _ i aLC(tn)
g1 (t,) dt \ 9" (t,n) )
Y#£ Sy # a, B

Finally let us consider affine constraints of the form

.r JE—

(417)  fo(tn) = 0" (tn) + AL n)d (tm) 7" (tn) a=T,p, r = pF Lm,
where

(4.18) AR(t,n) = AZ(q(t,n)) , v (t,n) = v*(a(t,n)).

From the Lagrange-d’Alembert principle we obtain
Propositin 4.5. The motion is given by

(4.19) E,(L) = A%(t,n) E, (L),

.a

(420)  d"(bm) + ALt (n) — 7" (tm) =0, a=Tp, r=r ¥ Lm.

Let now the constrained Lagrangian L obtained by substituting the constraints
(4.20) in the Lagrangian

(4.21) L(t,n) = L(n,q(t,n), ¢*(t,n), ¢*?(t,n),q (t,n)),

that is
(4.22)
Le(t,n) = L(n, q(t,n), ¢ (t,n), ¢*? (t,n), —A%(t,n)d" (t,n) + v (t,n),qd (t,n)).
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Theorem 4.6. The equations of the motion are

dLc(t,n)

(423) E,(Lc) = A(t:m) G

q"(t,n) + A%(t,m)d (t,n) — " (tn) =0, a=T,p, r,s=p+ L,m,
where
0A%(t,n) 0A%(t,n)
dqm(t,n)  Oq"(t,n) "

(4.24)  B(t,n) =

(4.25) Y (t,n) = % — Aﬁ(t,n)% +4°(, )%’:g((tt:))

Examples. 1) Let the Lagrangian

3
1. . -j 1 ) .
L(t/n) = §5qu (t7n)qj (t/n) - Z E 5iqua(t7n)q]a (tan)i

3
1 ) )
E giaf af
(426) 72 51Jq (t7n)qj (t/n)

«,B =0
a#pB

and the constraints ¢2°(t,n) — ¢%(t,n)q'°(¢,n) = 0.
We have

1. . -j 1 1
Lo(t,n) = 5634 ()0 () = (14 ¢*(t0)*)g"*(t,n)” — 34 (t,n)*

2

3 3
1 o jo 1 e jov
71 § 5ijq (t7n)qj (tan) o Z E 5ijq B(t7n)qj ﬁ(t7n)
a=1 a,B=0
a#pB

and the equations of the motion of order ,,0” are given by

G (t,n) + ¢ (t,n)§ (t,n) = <1 + %q2(t,n)2 + 1(]2(t,no)2> O (t,n)+

2
+3 (a"(tn) + ¢ (t,n)g’ ) + Z (¢" P (t,n) + ¢*(t,n)¢** (t,n)),
Pl = St = 3 ) - n) = 5a?(tm)a" (1)

vl
¢ (t,n) = ¢*(t,n)q"" (t,n) .
2) Let the Lagrangian given by (4.26) and the constraint
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q312(t,n) _ q2(t7n)q112( ) =0.

We have

1. . - 1 ) )
Le(t,n) = 8 (t,n)d (t,n) — 7 2 i (t,m) ™ (t,m) -
a=0

3
1 1 ) )
71(1 + ¢2(t,n)?) g2 (t,n)? — Zqm(t,n)2 = > 8iq" P (t,n)g? P (t,m)

ok Ba A
and the equations of the motions of order ,,12” are the followings
-1 2 -3 1L, 2 1o 12y2y 112
3 3
+> (@' (tn) + ¢ (t,n)¢” Z (a"*7(t,m) + ¢*(t,n)g**® (t,m)),

a=0 a,
a#ﬁ,ﬂ#l,ﬁ#Q

3 3
.. 1
Pl = Y + 3 @) - e e
a=0 a, B =

ke A
¢ (t,n) = ¢*(t,n)g P (tn).
Consider the Lagrangian (4.26) and the constraint

0 (t,n) — ¢*(t,n)d" (t,n) = 0.

We have

Le(t,n) = %(1 + q2(t,n)2)(11(t,n) + 1(1 (t,n)" — i Zéiqu(tm)qj“(t,n)—

2
1 3
D R Ca ROV (30
a&i:ﬁo

and the equations of the motiom are given by

(1+¢°(t,m)i (tn) + 4 (1,n)i (8, n) = —2¢>(,n)d (t,0)d” (t,n)—

= > (@ (tn) + ¢ (t,n)g** (t,n)) — Z (q"*(t,n) + ¢*(t,n)g**" (t,m))
P(tn) = ¢ tn)id (60 + 3 @)+ Y PP ().
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5 Noether’s Theorem for diamond-type
crystals

Let G be a Lie group acting (at the left) on Q by (g9,9) € G x Q@ — gq = 7 ,
(99)(t,n) = q(t,n,g). Let G be the Lie algebra of G and G* the linear dual af G. To
each vector £ € G corresponds an one-parameter subgroup of G, exp(e€) , e € I C R,
whose action on ) determines

(5.1) €altn) = lexp(e8)a(t,m)].—o , Y(i.n) € R.

From (5.1), we obtain

(5.2) Eht,n)=Ki(t,n)¢" ,i=1,m, a=1,r, r=dimG,
where

dqi (t7 n, exp(Eea))
de

(5.3) =%, €6, Ki=

e=0

Let g@” be the canonical prolongation of the action of G on 2 x Q! x Q2x (). The Lie
group G is called a symmetry group of the system ({2, L), where L is autonomous in
b, if

(5.4) Lo@”(t,n,g) = L(t,n), V(t,n) e R, Vg € G.

The corresponding a-momentum map is the function 7, : Q x T,Q' — G*, given by

(5.5) Ta(t,n) = =—2Ki(t,n%)e" , a € {0,1,2,3} , fixed.

The corresponding af-momentum map is the function J,5 : @ x T,0? — G*,

(5.6)  Jaslt,n) = OL(t,n)

i afBy a
= WKa(t,n )6 , O[,,B S {0,1,2,3}, O[#,B ,ﬁXed.

L]
The corresponding continuous momentum map is J :  x T, Q— G*,

(5.7) J(t,n) = MKi(t,n)e”.
a9 (t,n)

Theorem 5.1. (Noether’s Theorem for diamond-type crystals). For each so-
lution of the Euler-Lagrange equations (3.7),

(5.8) ;j;(t:n) Y T+ djc(ii, n) _ 0,

0

a,
a

w

B
#

where
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TE(tn) = Ja(t,n®) = Tu(t.,n) , T8 (t,0) = Tas(t,n*?) — Tas(t,n).

Suppose that the Lagrangian L does not depends on ¢’ , j fixed. Locally the system
(Q,L) admits a symmetry group G;. The action on € is given by

(5.9) 7'(t,n)=q'(t,n), @(t,n) =¢(t,n)+ao’ ,i#j o’ €R.

We have Kf (t,n) = 5; and from (5.6) we obtain

(5.10) iG(L(t,nHL(t,n“)) +ia(L(t,n)+L(t,n“B)) d (am,m) o

dp(tn) 2= 0gied(tm) dt
a#p

The coordinate ¢’ is called a cyclic coordinate.

6 Momentum equation for diamond-type
crystals with impurities
In this sections we shall use the Lagrange-d’Alembert principle to derive an equation

for a generalized momentum as a consequence of the symmetries. We assume that the
action of G on (Q is free and proper. The orbit through a point ¢ € Q is denoted by

Orb(q) = {gqlg € G}. Let S C O x Q' x O%x Q) and T,S the virtual variation. If
Sq =T,SNT,(orb(gP)) # {0}, where g is the canonical prolongation of the action of

G on Q x Q' x O2x () then let G(q) = {€ € Gl¢alq) € S, ).
The a-nonholomic momentum map 7, is defined by

(6.1) Ta(t,n) = %fi(t,n”), (t,n) € R,

where
Ei(t,n®) = Ki(t,n)E(t,n®) , £(t,n") = E(a(t,n%)), @ € {0,1,2,3} , a fixed.
The af-nonholonomic momentum map J,p is defined by

(6.2) Tas(t,n) = %fi(tmaﬁ) , (t,n) € R,

where
E(t,n") = Ki(t,n*?)¢(t,n*?), a,B € {0,1,2,3}, a # 8 ,fixed.
The continuous nonholonomic momentum map 7 is defined by
OL(t -
(63) gt = 22D iy e,
oq (t,n)

where
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fi(fﬁ n) = K(Zz (t7 n)fa (t7 n)

Theorem 6.1. Assume that the Lagrangian L is invariant under the group action
and &(q) € G(¢). Then any solution of the Lagrange-d’Alembert equation for a S
satisfies the following momentum equation

3 3 3
o dJ(t, OL(t, o
S g+ 32 e + S = 32 R e )+
= a,3=0

T L e

At a fixed point gy € Q, we consider a basis {e1,...ep,ept1,...e,} of G such that
the first p elements form a basis of G(qg). Thus r = dimG , p = dimG(qo), which, by as-

sumption, is locally constant. We can introduce a similar basis {ei1(q), ... ep(q), ep+1(q), - - -

for ¢ € 2. Let a change of basis matrix

(6.5) eu(q(t,n)) = eu(t,n) = ¥y (q(t,n))ey(qo(t,n)) = o (t,n)e, , u,v =1,7.

Here the matrix (¥%) is an r x 7 invertible matrix. By the definitions (5.5), (5.6),
(5.7) we can write

Tualtn) = g s ealt .
(6.6 Tup(t.) = Gz oslea(t.n ),
Ja(t,n) = M[ Jtn)]y ,a=Tp, (t,n) € R,
a4 (t,n)

where
[ea(t,n™)]G = Ki(t,n%), [ea(t,n)]g = Ki(t,n°7) , [ea(t,n)]lq = K. (t,n).

Theorem 6.2. The momentum equation in a moving basis {e,(¢,n)}
by

u:l_,r 1S glven

3 dJ,(t,n)
Zj;a(t,n Z Ba+ ai ZAb (t,n,n*) Tab(t,n)+
a=0

,B=0 a=0
a#ﬁ

3 3

+ Z 92(’57”:na)jaﬁb(t7n)+FZ(t7n)jb(t,n)+z OL(t,n)

L AS(¢ « s (¢, a1t
— qu(t,n) b(t,n7n )[6 (tn )]Q+

3 OL(t,n) B B\
b3 g e+

a,B =0

atp

ver(q)}
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(6.7) +Mrgj(t, ) (t,n)es(t, )]} a =T,ps = pF LT,
a9 (t,n)
where
AL(tm.n®) = W (2, 0) T, (1, ),
(6.8) O3t n,n) = W21, n) (1,7,
Ihi(tn) = wl}i(t,n) ,a=1p,v=T1r.

0 (t,n)

Examples. 1) Let the Lagrangian

L(t,n)

1 x - J 1 : i jo
§5z‘jq (t,n)a (t,n) — 1 Z 859" (t,n)g’" (t,n)—

a=0

(6.9) Lo |
-1 Z 8iiq"P (t,n) g7 (t,n)
B=0
o # B
and the constraint
(610) q30 (ta n) - q2 (ta n)qlo(ta n) =0.

The constraint and the Lagrangian are invariants under the R2-action on R? given
by
(a',¢%.a") — (@' + X", ¢" +p).

The tangent spaces to the orbits of this action are given by

Tq(t,n) (Orb(q(t7 n))) = span{(l, 0, 0): (07 0, 1)}

and the virtual vectors of the constraints are given by

Sq(tm) = Span{(la 07 q2(t7 T])), (0, ]-7 0)}

It follows
Ty(¢.n)(Orb(q(t,n))) N Sy(,n) = span{l,0, a(t, n)}
and
&t = (1,0,¢%(t,m) €1 = (1,4%(t, ).

The nonholonomic momentum maps in this case are
joz(t7 n) = _%qla(t7 n) - %q3a(t7 n)qz(t7 na)}
jozﬁ (t7 n) = _%qlaﬁ (t, n) - %q3aﬁ (t7 n)qz (t7 naﬁ)}

T(t,n) =q (t,n) + 4 (t,n)g*(t,n).

The momentum equation is given by
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S tn)+ > (@ (tn) + P ()P (8 nP) + > ¢* (tn)g (t,n®)+
a=0 o, ﬁ#z 0 a=1
a B

+¢*(t,n)g* (t,n°)g"° (t,n) + ' (t,n) + ¢ (t,n)¢"(t,n) = 0.
2) Let the Lagrangian (6.9) and the constraint
q312(t= n) - q2 (t= n)q112 (t7 n) =0.

The momentum equation is given by

3 3

> d )y d" () + D d* (. n)d’ (1) ¢ (1. n)g? (1, n*)+

a=0 a=0

a,f =0 a, B=0
a#tpB,a#l, pB#£2 a#B,a#1,B#£2

+(L+¢* (t,n)g* (,n'%))g" 2 (t,n) + G (t,n) + ¢ (t,n)q” (t,n) = 0.

3) Let the Lagrangian (6.9) and the constraint

i (t,n) — ¢*(t,n)d (t.n) = 0.

The momentum equation is given by

Z(qlo‘(t,n) +¢**(t,n)g*(t,n")) + Z (@"“P(t,n) + ¢**P(t,n)q*(t,n*"))+

F(1 4 (6, n)2)d (¢, n) + ¢ (6, )0 (t,n)d (t,n) = 0.

4) For the same Lagrangian and the constraints

0’ (t,n) — ¢(t,n)d (t,n) =0,

q30 (t7 n) - q2 (t7 n)qlo(t7 n) = 07
q312(t= n) - qz (t= n)q312 (t7 n) = 07
the momentum equation is

(1+¢2(t,m)2)i (t,n) + 2 (t,m)d (1,00 (8,n) + (1 + ¢2(t,1°)2)g> (£, n)g " (¢, )+

3 3
H(1+* (' ))g 2 (En)+ Y (0" (8 n)+a* ¢ (1,n%)+D_(¢'*P +**P¢* (t,n*?)) =0.
a=0 o, B =0
@A B o A1, B A2
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