
Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

242

CHAT MESSAGE MANIPULATION LANGUAGE

Paula POPESCU1*, Victor CARAGIU1, Alexandr BOICO1,

Ion GAVRILIȚA1, Octavian GRECU1

1Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, Software Engineering,

Group FAF-191, Chișinău, Republic of Moldova

*Corresponding author: Paula Popescu, popescu.paula@isa.utm.md

Abstract. In this article has described a Domain Specific Language for message manipulation.

The Chat Message Manipulation Language has the purpose to offer an alternative way to manage

messages. This DSL will create more interactive communication and will reduce boring texting.

In addition, it will learn people basic code syntax. The grammar of this domain specific language

is simple so that it cannot confuse the user with many different functions and tricks. This language

is focused on gathering input function from the user, then on the server it analyses the syntax and

semantics and server application produce a JSON data structure to be sent as an output.

Key words: communication, mark-up language, domain specific language (DSL), parse tree, lexer.

Introduction

The most important domain in the human life is the communication one. Humans are social

person and they need to speak with their neighbourhoods every day [1]. In the 21st century when

all activities transferred to online platforms, communication also transferred on online format.

People use many messengers to speck with friends, neighbourhoods and even with teachers. The

Chat Message Manipulation Language has the scope to improve and make more interactive online

communication throw messages. It also focusses on style and interaction related functionalities,

such as defining message type. There are many message applications, but there is no one widely

used which support writing scripts in the message section to manipulate messages. This language

is meant to offer tools for text editing and generation for your chat application.

Reference grammar

The DSL design includes some important steps. First of all, definition of the programming

language grammar L(G) = (S, P, VN, VT), [2] where:

 S - is a start symbol;

 P – is a finite set of production of rules;

 VN – is a finite set of non-terminal symbol;

 VT - is a finite set of terminal symbols.

S = {program}.

VN = {<program>, <statement>, <manipulation>, <delimiter>, <method>, <object>,

<btn>, <qstn>, <gft>, <domain>, <transform>, <change>, <two_parameters>, <parameter>, <id>,

<number>, <letters>, <string>}.

VT = {+, button, question, gift, birthday, newyear, christmas, upper, lower, repeat, rightcut,

leftcut, edit, replace, a.z, 0.9, ,, ., “, ”, -, !, ?, ‘, ’}.

P = {

<program> → <statement>+,

<statement> → <string> <delimiter> <string> | <manipulation> | <manipulation>

<delimiter> <string> | <string> <delimiter> <manipulation> | <object>,

<manipulation> → <string>.<method> | <id>.<method>,

<delimiter> → +,

mailto:popescu.paula@isa.utm.md

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

243

<method> → transform>() | <change>(<number>) | edit(<string>) |

replace(<two_parameters>),

<object> → <btn> | <qstn> | <gft>,

<btn> → button([<string>] <string>),

<qstn> → question(<string>)[<string>][<string>]{ [<parameter>]<parameter> },

<gft> → gift(<domain>),

<domain> → birthday | newyear | christmas,

<transform> → upper | lower,

<change> → repeat | rightcut| leftcut,

<two_parameters> → {[<parameter>] <parameter>}+,

<parameter> → <statement> | <string>,

<id> → # <number>,

<number> → 0.9+,

<letters> → a.z+,

<string> → { a.z | 0.9 | , | . | ? | ! | “ | ” | ‘ | ’ | - }+

}

Semantics and semantic rules

This DSL in made for non-programming users too, the semantics have very few limitations

and rules. One of the rules that the user should follow is to write parameters of specific data types,

accordingly to those specified in the grammar.

The program can start with a string or an object. If it starts with a string, it can be directly

sent to the second user or transformed using the pre-defined functions.

In case the user wants to use an object, he can start describing only the object, without any

more messages outside the object. If there are any, they will be omitted. The functionality the

objects offer is that different or same type of particular objects can be nested, according to the

grammar. This language is case-sensitive and all the spaces are taken in the account.

Data types

There are two data types: int and enum. The enum data type is used for available domains

classification. In addition, there are two data structures: string and JSON. The data is created by

the keyboard input, or by referencing and updating old data. The data manipulation is done by the

built-in functions, which are called by the user input. The data of JSON type is generating from

the parse tree and is used to represent the components and their content.

Lexical analysis

As the lexical analysis require, [3] further is specify the following details: how to handle

comments, strings, errors and other specific characteristics of this lexer:

The CMML language doesn’t provide the possibility to write comments, as there is no need

to. Every character is treated as a part of the string which represents the message, until a method

is identified. The delimiter’s meaning is the start of the string’s section, meant to be modified by

the method, when the user doesn’t want to apply the method for all the string.

The errors are sent to the user as a pop-up, in the upper part of the chat section, and the

message is not posted. If the script doesn’t have errors it is posted, for the user to check if it is

working as intended. In order to send the messages or apply the modifications, the user have to

also click the send button.

Basic control structures

The control structure which is capable of branching the execution flow is the question

object: question(<string>)[<string>][<string>]{[<parameter>]<parameter>}. This component is

able to change the output, depending on the second user’s input.

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

244

Example of script and parsed tree

The following script represents a nested object inside another one of the same type, this

script will be write by the user in the input field of the messenger app. In the C language, the nested

function can access all the variables of the containing function that are visible at the point of its

definition, which is called lexical scoping [4].
question(Let’s go for a walk!)

[Accept][Decline]{

 [question(In the park?)[Accept][Decline]{

 [super…] Where do you want?

 }]

ok.}
Table1.

Generated tokens by the lexer from the source-code

Token Lexeme

qstn question

string Let’s go for a walk!, In the park?

answer_1 Accept

answer_2 Decline

parameter_1 super…

parameter_2 ok., Where do you want?

identifier {, }, [,].

The code is tokenized and converted into tokens through the process of lexical analysis in

Table 1 and into the parse tree through the process of syntactic analysis [5]. After conversions, the

translator’s output is a data structure, which keeps the tree’s structure for the interpreter.

Figure 1. The resulted scenarios of the conversation with components specified by the script.

 In Figure 2 below is presented the parse tree of the script presented above. This

ordered, rooted tree represent the syntactic structure of the script [6] according to the grammar of

CMML. It reflect the syntax of the input. In this way it is easier to visualize the way this language

acts. The parse tree is constructed according the relations defined in the grammar.

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

245

Figure 2. Parse tree

Conclusion

The intention of this paper was to show how the concepts of Domain Specific Languages

can help to improve and make more interactive online communication throw messages. Also, how

such an intelligent system using the grammar, which explains all the necessary components for the

application and how DSL can help people to use high technology utilities in their ordinary life

without having programming skills. The syntax of the language is quite simple, so even a child

can introduce himself in it and to begin to learn programming from an early age.

To top it off, this technology is here to transform the way people have ever looked at

message applications and create a different and interactive way of communication.

References
1. MATEI, S., BALL-ROKEACH, S. J., Real and Virtual Social Ties: Connections in the

Everyday Lives of Seven Ethnic Neighborhoods [online]. 2021, 03 [access 02.03.2021].

URL: https://journals.sagepub.com/doi/abs/10.1177/0002764201045003012

2. JOHN, E. H. and RAJEEV, M. J. D. U. Introduction to Automata Theory, Languages, and

Computation, 2001, p. 169.

3. APPEL, A. W. Modern Compiler Implementation in C, 1998

4. Nested Functions, [online]. [access: 27.02.2021]. URL:

https://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html

5. Tokenization and Abstract Syntax Tree. [access: 27.02.2021]. URL:

https://geekeefy.wordpress.com/2017/06/07/powershell-tokenization-and-abstract-

syntax-tree/

6. AHO, V., ULLMAN, D. The Theory of Parsing, Translation and Compiling Parsing of

Series in Automatic Computation, vol. 1, Prentice-Hall, 1972

https://journals.sagepub.com/doi/abs/10.1177/0002764201045003012
https://gcc.gnu.org/onlinedocs/gcc/Nested-Functions.html
https://geekeefy.wordpress.com/2017/06/07/powershell-tokenization-and-abstract-syntax-tree/
https://geekeefy.wordpress.com/2017/06/07/powershell-tokenization-and-abstract-syntax-tree/

