
Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

226

DOMAIN-SPECIFIC LANGUAGE FOR GRAPHICAL

REPRESENTATION OF MATHEMATICAL EXPRESSIONS

Dumitru PUȘCAȘ1, Antonela MALÎI1*, Bogdan PICIRIGA1,

Nicolae URSU1, Alexandru DANILESCU1

1Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics,

Department of Software Engineering and Automatics, group FAF-192, Chisinau, Moldova

*Autorul corespondent: Antonela Malîi, malii.antonela@isa.utm.md

Abstract. In this article is described a Domain Specific Language for graphical representation of

mathematical expressions. It is named Maf(s). The grammar of this domain specific language is

simple, so that it cannot confuse the user with many different functions and tricks. It is focused on

modelling graphically represented mathematical models together with a simulation of the step-

by-step resolution of some of these expressions or equations.

Key words: DSL, grammar, functions, graphically, Maf(s), equations, functions.

Introduction
A domain-specific language (DSL) is a computer language designed to be used in a

particular field to solve a specific class of problems. It can be used in different contexts and by

different kinds of users. Some DSLs are intended to be used by programmers, and therefore are

more technical, while others are intended to be used by someone who is not a programmer and

therefore they use less geeky concepts and syntax. The main idea of a DSL is to offer means which

would allow the specialist of a particular domain to compute the solution using idioms and terms

that he operates with. Some well-known examples of DSL are: HTML, CSS, SQL, MATLAB,

XML, UML etc. [1].

The main advantages of a DSL in comparison with general-purpose programming

languages are:

1. It can be used by people that don’t have programming experience, as it is human-

readable language and everything can be understood intuitively.

2. A DSL requires much less computational resources and memory.

3. All the elements of a DSL are the basic and most important ones, so the user won’t have

to dive into a big variety of different sets of commands and structures as in the case of

a general-purpose language [2].

However, the easier is the language to be understood by a user the harder it is for the

programmer to develop it, because the DSL developer must have an advanced level of knowledge

in several fields: the field his DSL is based on, computer languages, compilers, language

processors etc.

The DSL for Graphical Representation of Mathematical Expressions

Maf(s) is a DSL with the main purpose to offer the users an easy way to represent different

sorts of: equations, inequations, integrals etc.The DSL is flexible and requires a little

computational resources. As the language is based on Mathematics, the main problem that it was

decided to focus on is writing formulas and analyzing them, the people that have done at least once

know what it is like. It seems like an easy task, but when it comes to integrals or differential

equations it can get pretty tedious to write all the formulas and keep the track of correctness and

rigorosity of the written equations. That’s where Maf(s) DSL comes into play. This language will

mailto:malii.antonela@isa.utm.md

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

227

provide an easy and efficient way to formulate the equations and make an in-depth analysis. With

the uninterrupted development of the Maf(s) DSL, it is possible to implement many functionalities

such as showing the solution step by step, which will be handy in understanding the results for the

domain-experts and extremely useful for the students that want to get a better grasp of what’s

happening. Focusing more on the computational model, it should be said that our modelling

language design consists of two parts: the first part provides domain concepts adapted for

mathematical expressions modelling as well as the concrete syntax of the language, the second

one aims at establishing a set of semantic operations which will execute our specified features of

the DSL.

Grammar Rules
Grammar of a programming language is a technical way of describing a set of formal rules

that overviews how the programming language is constructed and presents the valid tokens and

lexemes. The code of any programming language can be implemented without any errors and

troubles according to a specified valid grammar that should respect a set of predefined rules of

definition of the grammar in general [3]. The grammar for the domain specific language consists

of a 4-tuple G = {T, N, P, S} where:

● “T”-set of terminals.

● “N”-set of non-terminal.

● “S”- start symbol.

● “P” – the set of production rules for generating valid sentences of the language.

Tabel 1

Meta-notation

<foo> means foo is non-terminal

foo (in bold font) means that foo is a terminal

x* means zero or more occurrence of x

𝑥 + a comma-separated list of one or more x’s

| separates alternatives

N = {<source code>, <program>, <block>, <var_decl>, <type> , <var> , <digit>, <digit*>,

<number>, <statement>, <function>, <equation>, <inequation> , <expression>, <system>,

<method>, <math_func>, <pow>, <sqrt>, <rel_operators>, <condition>, <findValue>}

T = {0.9, aA.zZ, + - < > <= >= = * / () [] {} # ^ ,pow, rad, solve, represent, if, end}

S = {start}

Rules:

P= {

<source code> → start <program> end

<program>→<block>*

<block>→ # <var_decl>^+ <procedure>^+ <statement>^+ #

<var_decl>→<type> <var>

<type> →int | float

<var>→ <char><digit>*

<char>→a|b|…z|A|B|.Z

<digit>→0|1|.|9

<digit*>→1|2|3.|9

<number>→<digit*><digit>*

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

228

a) b)

a) b)

<statement>→<function>|

 <equation>|

 <inequation>|

 <expression>|

 <system>|

 <method>

<function>→ f(<var>^+)=<expression>

<equation>→ <expression> = <number>

<inequation> → <expression> <rel_operators> <number>

<expression>→<number>*<math_func>*<operators>*|

(<number>*<math_func>*<operators>*)

(<number>*<math_func>*<operators>*)<number>*<math_func>*<operators>*|

{(<number>*<math_func>*<operators>*)<number>*<math_func>*<operators>*}|

{(<number>*<math_func>*<operators>*)<number>*<math_func>*<operators>*}<num

ber>*<math_func>*<operators>*

<system>→ ‘{‘ <equation>*

<math_func>→<pow>|

 <sqrt>|

 <var>

<operators>→ + | - | / | *

<pow>→ pow (<var>,<number>)

<sqrt>→ rad(<var>, <number>)

<rel_operators> → < | > | <= | >=

<method>→if (<equation> | <inequation>) <condition>

 [else <condition>]

<condition>→ <expression> | <equation> | <inequation>

<procedure> → solve | represent | <findValue>

<findValue> → findValue (<var>= <number>)*

}

The code syntax is going to be checked by the parser and this will be done with the help of

ANTLR tool. The script will run successfully if all the specifications from the grammar will be

respected. Otherwise, it will display a message that something went wrong [4].

Maf(s) have three basic data types: string, float and integer. The DSL gives the three main

possibilities of statement procedures usage: “represent”, “findValue” and “solve”.

To explain how the tokenization will be realised, it will be represented the process

according to a few different examples:

Figure 1 a) Input example nr.1 b) Input example nr.2

For the code from the Figure 1 a) and Figure 1 b) it can be elaborated the semantic

implementation based on the rules defined earlier:

1. <source code>→ start <program> end→ start (<program>→ <block> → # <var_decl

<procedure <statement #) end→start (# <var_decl> →((<type>→ int)

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

229

(<var>→(<char><digit>*)→a)) <procedure> → represent ,<statement>→(<equation>

→(<expression> = <number>) →((<number>*

((<math_func>*)→pow(<var>,<number>)) <operators>*) = <number>)→

2*pow(a,2)+a+7=0) #) end

2. <source code>→ start <program> end→ start (<program>→ <block> → # <var_decl>^+

<procedure>^+ <statement>^+ #) end →start (# <var_decl> →((<type>→ int)

(<var>→(<char><digit>*)→x)) (<procedure> → findValue→((<var>=

<number>)→x=3)), <statement>→(<function> →(f(<var>^+)=<expression>) →

(f(<var>^+)={[(<number>* <math_func>* <operators>*)<number>* <math_func>*

<operators>*]<number>* <math_func>* <operators>*}))→ f(x)={[(x+7)+5]/10}) # end

Conclusion

In this paper it was analyzed and described what is a DSL and what are the main advantages

of it. Additionally, it is presented the Maf(s) language, which was developed to let people describe

and visualize mathematical expressions. The grammar of language is intuitive and pleasurable to

use, so it’s convenient for a large group of people. To create Maf(s) it will be developed a parser.

When Maf(s) code runs, the lexer is being created, then the token object shows-up, afterwards the

parse comes into play and finally the tree is being parsed. Actually, all these actions depend on the

type of input, for different inputs the order can be different.

References

1. FEDERICO TOMASSETTI, The complete guide to external DSL, 2019.

2. THORSTEN BERGER, Domain-Specific Languages concepts, examples,.2017.

3. PETER SEWELL, Semantics of Programming Languages, England: Cambridge

University. 2008-2009.

4. Lexical analysis and Grammar analysis.[online].[access 25.02.2021]

Available:teachcomputerscience.com/lexical-analysis/

https://teachcomputerscience.com/lexical-analysis/

