
Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

192

UNIVERSAL LANGUAGE FOR FINITE STATE MACHINE DEFINITION

Vasile PĂPĂLUȚĂ1*, Constantin CAZACU1, Anastasia GHEORGHIȚĂ1,

Pavel CERLAT1, Diana OLEDNIC1

1Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, Department of

Software Engineering and Automatics, FAF-192, Chișinău, Republic of Moldova

*Corresonding author: Vasile Păpăluță, papaluta.vasile@isa.utm.md

Abstract. This article is about a Domain Specific Language (DSL) called LOONA Language that

has been developed to serve as a universal language for defining Finite State Machines (FSMs).

This will serve as a universal guideline by which developers can create and implement their own

state machines.

Keywords: Domain Specific Language, Finite State Machine, Syntax, Grammar, Python.

Introduction

Finite State Machines these days have a lot of uses. They are used in the automotive

industry, especially in autonomous vehicle development for parallel parking. In Fin-tech they are

used for transitions and other types of financial operations for controlling the different steps of

them. In game-development they describe non-player character (or NPC) behavior [1]. These are

only some of the fields where FSMs are used, however all these fields like a universal language

for defining them, like HTML or SQL. All of them are defined by the developers in their unique

way that depends on their skills and experience. These facts are limiting the developing and

replication of them on different projects if the developing leaves the company [2].

Solution

LOONA aims to be this universal language for defining FSMs, using simple writing rules.

It allows to easily define the main states used by the automaton or FSM, without defining other

variables that can disturb the FSM’s running process. Also, it allows to easily describe the

transition process, directly describing the change that must be performed in the program

environment, skipping in this way the development of the special logic to change state of the FSM.

Also, to make the process of state transition easier, LOONA allows to define the so named

gateways - the gateways between the FSM and the user program. The (python) program must send

to the FSM a dictionary with the values related to keys named as the gateways, and the FSM returns

the new state (updated after the transition), which the program can use for its own scopes.

As it was said before, FSM has a lot of uses in a lot of different industries. Just to dive

deeper in those enumerated before, here are some more examples. Interest of the automotive

industry in designing intelligent systems capable of operating autonomously and safely beyond the

linear region limits is constantly growing. Using the DSL would have its advantages: it would be

clear in structure as it will be explicitly readable, so the behavior of automated controllers could

be easy to predict; it will be reliable, because an FSM usually has a finite number of parameters,

so that is easy to calibrate and optimize.

FinTech industry - the DSL can help this industry by facilitating the process of assisting

companies, business owners, consumers etc. for better management of their financial operations,

processes, and lives in general. The DSL can provide a better performance of computations, a

greater accuracy of models, secure development, reliable results and more productivity.

Entertainment – usually, FSM is used in video games for the creation of rudimentary

effective AI. A finite state can be used to define certain non-playable character (NPC) behavior,

such as attacking, roaming or running. FSM could be used for mimicking a player strategy and

https://utm.md/en/university-subdivisions/faculties/faculty-of-computers-informatics-and-microelectronics/
https://utm.md/en/university-subdivisions/faculties/faculty-of-computers-informatics-and-microelectronics/department-of-automation-and-informational-technologies/
https://utm.md/en/university-subdivisions/faculties/faculty-of-computers-informatics-and-microelectronics/department-of-automation-and-informational-technologies/
mailto:papaluta.vasile@isa.utm.md

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

193

attack pattern in a fighting video game, by splitting the data into 2 tiers, strategic data and tactical

data. Using the DSL for video games contains a high level of abstraction that allows to define all

the elements that are necessary for the generation of a videogame, as well as the establishment of

the required values to assign a behavior to the actors [3].

Legal aspect - using a DSL can provide more visibility for both sides of enterprises,

improved cost savings, and a better performance.

The high use of FSMs in industry, made some software companies to develop their own

frameworks and even languages, for defining these FSMs. Tinder - the famous dating app created

Tinder StateMachine a DSL for defining Finite State Machines and Automata implemented in

Kotlin. Voxa is another framework for FSM used by Alexa Skills, Google actions Facebook

Messenger and Telegram bots implemented in node.js. Finally, the Netflix conductor for

orchestrating microservices, implemented by the mentioned company [4 - 6].

Implementation

Basic computation that the DSL performs:

The DSL that will be created, will generate an automaton in the form of a matrix. This

matrix will be contained in a class and other FSMs can be created by this new created class.

Basic data structures in the DSL:

The language will have the following data structures:

1. State - it represents the usual state in an automaton or Final State Machine. It is

defined by the following syntax:

state <name of the state>

If the user wants to make a state the starting one it will write the following, syntax:

state <name of the State>(start = True)

or if it needs to be defined as a killer state, use the following syntax:

state <name of the State>(killer = True)

2. State transition matrix (STM) - an actual python dictionary with 2 keys that will

implement the state transition matrix, inside the class factory.

3. Gateways - the gateways to user defined input, that will influence the FSM states.

They are defined by the following syntax:

gateway <name of the gateway> <dtype of the input>

When defining a gateway, the user must define its data type, that can be:

● numerical;

● string (str);

● Boolean (bool).

Basic control structures in the DSL

The main control structure of the language is the STMs (Phobos and Deimos) - Phobos is

the matrix built by the DSL after reading the code file. Usually, the Phobos is defined by the

following syntax:

 <state name 1> → <state name 2> : <change condition>

Usually changing conditions are defined using the input from the gateway.

The Phobos must look like the table shown in Table 1.

After the Phobos is built, on its base is built the Deimos - a python dictionary with a tuple

as an input and a new state as the value related to it. The tuple will contain 2 values, the state and

the action, but the value will be represented by the new state.

Input/Output

The input of the program will be a .txt file with the definition of the state machine. See the

example below in code snippet 1:

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

194

Table 1

State-transition table (S: state, I: input, O: Output)

Input Current State Next State Output

I1 S1 Si Ox

I2 S1 Sj Oy

… … … …

In S1 Sk Oz

I1 S2 Si’ Ox’

I2 S2 Sj’ Oy’

… … … …

In S2 Sk’ Oz’

… … … …

I1 Sm Si’ Ox’

I2 Sm Sj’ Oy’

… … … …

In Sm Sk’ Oz’

Code snippet 1. The example of the code in LOONA,

state Start(start=True)

state FL

state FR

state FI

state BL

state BR

state BI

state SL

state SR

state SF

state trap(trap=True)

Start → FI : *

FI → SF : threshold(dist1, 4, min)

SF → FI : threshold(calc_dist, car_lenght, max)

FI → BS : timepassed(4)

BI → BR : timepassed(6)

BR → BL : timepassed(6)

BL → FI : timepassed(6)

FI → SI : timepassed(3)

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

195

gateway gate1 numerical

gateway gate2 numerical

gateway dist1 numerical

gateway gate4 numerical

gateway gate5 numerical

gateway gate6 numerical

gateway calc_dist numerical

gateway car_lenght numerical

The output of the model will be a python class that will be used to create other state

machines.

Error Handling

The language will have the following errors, which it will show:

1. Error1 : Start state isn’t defined: row_number = <n>:

This error raises when the starting state is not defined.

2. Error2 : Parameter <name of the parameter> is not defined : row_number = <n>:

This error arises when a parameter is used by a function, but is not defined in the gateway.

3. Error3 : State <name of the state> isn’t defined : row_number = <n>:

This error arises when a state is used in the STM definition but isn’t defined.

4. Error4 : No such input type : row_number = <n>:

This error is raised when a gateway is defined with a non-existent dtype.

5. Error5 : No such transition function as <fun_name> : row_number = <n>:

This error is raised when a transaction function that doesn’t exist is used when the STM is

defined.

Conclusion

LOONA language aims to use simple writing and a very restrictive syntax in order to

streamline the process of implementation of Finite State Machines in various environments such

as: automotive, FinTech, entertainment and the legal aspect.

References:

1. EDMUND L., Enhanced NPC Behaviour using Goal Oriented Action Planning , MSc

dissertation, Dundee, Scotland, University of Abertay Dundee, 2007

2. JOHN E.H., RAJEEV M., JEFREY D.U., Introduction to automata theory, Addison-

Wesley, 2001.

3. SAINI S., CHUNG P.W.H., DAWSON C.W., Mimicking Human Strategies in Fighting

Games using a Data Driven Finite State Machine, Proceedings of the 6th IEEE Joint

International Information Technology and Artificial Intelligence Conference (ITAIC),

Chongqing, China, 20 - 22 August 2011, pp. 389 - 393

4. Tinder State Machine [online], [accessed 04.02.2021 20:30PM]

Available:https://github.com/Tinder/StateMachine
5. FSM for digital assistants [online], [accessed 04.02.2021 20:45PM]

Available:https://github.com/VoxaAI/voxa
6. Netflix Conductor: A microservices orchestrator [online], [accessed 04.02.2021 21:20PM]

Available:https://netflixtechblog.com/netflix-conductor-a-microservices-

orchestrator-2e8d4771bf40

https://github.com/Tinder/StateMachine
https://github.com/VoxaAI/voxa
https://netflixtechblog.com/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40
https://netflixtechblog.com/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40

