
Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

180

DOMAIN SPECIFIC LANGUAGE FOR GRAPHICAL DATA

VISUALISATION

Gheorghe MORARI1, Nichita PASECINIC1, Alex CLEFOS1,

Roman BOTEZAT1, Ana ȘARAPOVA1*

1Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, Department of

Software Engineering and Automatics, FAF-192, Chișinău, Republic of Moldova

*Corresponding author: Șarapova Ana, sarapova.ana@isa.utm.md

Abstract. This article is about a Domain Specific Language (DSL) called Python Graphing

Language (PGL) that has been developed for the graphing/charting domain as a free, lightweight,

and simple alternative to common data visualization software such as MATLAB.

This article describes the syntax, the grammar, the implementation, the future plans for this DSL,

and the comparison with analogous data visualization software.

Keywords: Data Visualisation, Grammar, Matlab, Syntax, Plotting, Python, Python Graphical

Language

Introduction

Graphing, Plotting, and Charting are three words that represent the same idea - graphical

representation of data. The domain of charting is a subdomain of the scientific one. Historically

charting was done firstly with pen and paper [1], later with the popularisation of computers, there

appeared graphing calculators [2], and with the internet revolution, online graphing software and

purpose-made software started getting widely used [3].

PGL was made to be easy to use like online graphing software while providing advanced

functionality for data manipulation and visualization. These functionalities, unfortunately, come as

a compromise between features and simplicity, where PGL is mostly targeting simplicity, and

cannot touch the feature set of established scientific grade software.

Solution
PGL is an attempt to solve the following problems that established charting software have,

and it is:

- Free-to-use, unlike MATLAB [4].

- Novice-friendly, due to simple syntax and grammar.

- Platform-independent, meaning that it can work on any device with a popular operating

system [5 - 6].

- Small in size, in comparison to alternatives such as MATLAB, which may take up to 29GB

for all its licensed product [7].

Nevertheless, this DSL enhances Python plotting experience with custom plotting related

keywords, MATLAB-like syntax, and general simplifications. PGL also provides keywords for

quick data manipulation, input, and output, such as interpolation, extrapolation, dimensionality

reduction, noise reduction, file input, CSV file input, and others.

Syntax

The current syntax of PGL has two instructions: subplot and plot.

These two instructions contain multiple sub-instructions like type, style, legend, and

others.

https://utm.md/en/university-subdivisions/faculties/faculty-of-computers-informatics-and-microelectronics/
https://utm.md/en/university-subdivisions/faculties/faculty-of-computers-informatics-and-microelectronics/department-of-automation-and-informational-technologies/
https://utm.md/en/university-subdivisions/faculties/faculty-of-computers-informatics-and-microelectronics/department-of-automation-and-informational-technologies/
mailto:sarapova.ana@isa.utm.md

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

181

The sub-instructions themselves have sub-instructions like simple, bar, theme, color, and

others.

There is an example of code where we can see instructions within instructions:
comment

subplot subplot0 = {

 type = simple,

 x = [0, 5, 10, 15],

 y = [1, 2, 5, 8],

 style = {

 color: red,

 label: "subplot label",

 line_style: "--",

 marker: "*",

 line_width: 1

 }

}

Grammar

Notation Description

<foo> Means that element is a nonterminal

foo Means that foo is a terminal element

[foo] Case with foo as an optional element

foo+ Show one or more occurrences of foo

{} Used for grouping elements

| Separates possible alternatives

& Combine states

Shows the comment line

<start> The starting state of grammar

G = {𝑉𝑇, 𝑉𝑁, P, S}

S = {<start>}

𝑉𝑇= {EOF, \n, subplot, plot, colors, letter, digit, logicalOp, style_params, type, save,

subplots, :, =,{,},[,],_}

colors 𝜖 {red, green, blue, yellow, orange, violet, black, white, mint, grey, navy, pink}

letter 𝜖 { a, …,x, y, z, A, B, C, …, X, Y, Z}

digit𝜖{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

logicalOp 𝜖 { True, False}

style_params 𝜖{style, theme, color, line_style, marker, line_width, label, legend, title, loc,

shadow, config, tight_layout, grid}

type𝜖 {simple, bar, pie, stack}

𝑉𝑁={start, instruction, plotting_params, color_enum, string, number, types, x_axis, y_axis,

plot_styles, legend, config, subplots, type, array}

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

182

Instruction 𝜖{subplot_assign, plot_assign, string, subplot_params, plot_params,

subplot_param, plot_param, types, x_axis, y_axis, plot_styles, legend, config, subplots, type,

array}

plotting_params 𝜖 {subplot_params, plot_params, subplot_param, plot_param}

P={<start> → <instruction>+

<instruction> → <subplot_assign> | <plot_assign> | \n | EOF

<subplot_assign> → subplot <string> = <subplot_params>

<subplot_assign> → plot <string> = <plot_params>

<subplot_params> → { <subplot_param> [, <subplot_param>]+ }

<subplot_param> → <types> | <x_axis> | <y_axis> | <plot_styles>

<plot_params> → { <plot_param> [, <plot_param>]+ }

<plot_param> → <types> | <x_axis> | <y_axis> | <plot_styles>

| <legend> | <config> | <subplots>

<types> → type = <type>

<type> → simple | bar | pie | stack

<x_axis> → x = <array>

<y_axis> → y = <array>

<plot_styles> → style = { <plot_style> [, <plot_style>]+ }

<plot_style> → <theme> | <color> | <line_style> | <marker> | <line_width> | <label>

<theme> → theme : <string>

<color> → color : <color_enum>

<line_style> → line_style : <string>

<marker> → marker : <string>

<line_width> → line_width : <number>

<label> → label : <string>

<legend> → legend = { <legend_param> [, <legend_param>]+ }

<legend_param> →<x_label> | <y_label> | <title> | <loc> | <shadow>

<x_label> → x : <string>

<y_label> → y : <string>

<title> → title : <string>

<loc> → loc : <string>

<shadow> → shadow : <bool>

<config> → config = { <config_param> [, <config_param>]+ }

<config_param> → <grid> | <tight_layout> | <save>

<tight_layout> → tight_layout : <bool>

<grid> → grid : <bool>

<save> → save : <string>

<subplots> → subplots = { <string> [, <string>]+ }

<color_enum> → red | green | blue | yellow | orange | violet | black

| white | mint | grey | navy | pink

<array> → [<number> [, <number>]+]

<number> → <digit>+

<digit> → 0 | 1 | … | 9

<bool> → True | False

<string> → <char>+

<char> → a | b | . | z | A | B | . | Z | 0 | 1 | … | 9 | _ | }

Implementation

PGL in its current form is implemented in python using the Lark library for parsing and

grammar definition. Most of the features implemented are using Matplotlib, Pandas, and NumPy.

Technical-Scientific Conference of Undergraduate, Master and Phd Students

Chisinau, 23-25 March 2021, Vol. I

183

Matplotlib is a library that displays the plots, and it is the heart of the implementation. The

rest of the libraries are used for convenience and performance.

PGL is still in its infancy where most of the core features still need implementation. We are

currently planning to implement multiple plot figures, file input and output, and array management.

It is planned to introduce other trivial features like array data management, and data science

tools like interpolation, extrapolation, random value generation, and others.

The current state of our implementation: https://github.com/nikitaal/dsl

Conclusion

PGL is a viable alternative to established software by providing an enhanced plotting

experience via user-friendly syntax and simplified data and plotting manipulation processes while

being open-source and free to use.

References:

1. History of data visualisation [online, accessed 28 Feb 2021 14:30], available on:

https://en.wikipedia.org/wiki/Data_visualization#History

2. History of Graphing Calculators, Vernon Morris [online, accessed 1 Mar 2021 16:17],

available on: https://www.meta-calculator.com/blog/history-of-graphing-calculators-and-

tools/ [online, accessed 1 Mar 2021 16:02]

3. The 10 Best Graphing Calculators (Physical and Online), Carrie Cabral [online, accessed

1 Mar 2021 16:39], available on: https://blog.prepscholar.com/graphing-calculator

4. MathWorks Pricing & Licensing [online, accessed 28 Feb 2021 14:34], available on:

https://www.mathworks.com/pricing-licensing.html

5. Supported platforms and architectures [online, accessed 28 Feb 2021 14:43]

https://pythondev.readthedocs.io/platforms.html

6. Operating System Market Share Worldwide, GlobalStats, [online, accessed 28 Feb 2021

15:41], available on: https://gs.statcounter.com/os-market-share

7. MATLAB Licensing, Software Licensing [online, accessed 28 Feb 2021 15:48], available

on: https://it.cornell.edu/software-licensing/matlab-licensing

https://github.com/nikitaal/dsl
https://en.wikipedia.org/wiki/Data_visualization#History
https://www.meta-calculator.com/blog/history-of-graphing-calculators-and-tools/
https://www.meta-calculator.com/blog/history-of-graphing-calculators-and-tools/
https://blog.prepscholar.com/graphing-calculator
https://www.mathworks.com/pricing-licensing.html
https://pythondev.readthedocs.io/platforms.html
https://gs.statcounter.com/os-market-share
https://it.cornell.edu/software-licensing/matlab-licensing

