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Abel quadratic differential systems of second kind
ARTES C. Joan, LLIBRE Jaume, SCHLOMIUK Dana, and VULPE Nicolae

The Abel differential equations of second kind, named after Niels Henrik Abel,
are a class of ordinary differential equations studied by many authors (see, for
instance, [1-3]). Here we consider the Abel quadratic polynomial differential
equations of second kind denoting this class by 𝑸𝑺𝑨𝒃 . Firstly we split the whole
family of non-degenerate quadratic systems in four subfamilies according to the
number of infinite singularities. Secondly for each one of these four subfamilies
we determine necessary and sufficient affine invariant conditions for a quadratic
system in this subfamily to belong to the class 𝑸𝑺𝑨𝒃 . Thirdly we classify all
the phase portraits in the Poincaré disc of the systems in 𝑸𝑺𝑨𝒃 in the case when
they have at infinity either one triple singularity (21 phase portraits) or an infinite
number of singularities (9 phase portraits). Moreover we determine the affine
invariant criteria for the realization of each one of the 30 topologically distinct
phase portraits. To obtain these criteria we apply the theory of algebraic invariants
of polynomial differential systems, developed by Sibirsky and his disciples (see for
instance [4-8]).
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