

S. I. Radautsan, N. N. Syrbu, I. G. Stamov, Photoelectric properties of heterotransitions $\text{ZnP}_2(D_4^8) - \text{ZnP}_2(C_{2h}^5)$, Dokl. Akad. Nauk SSSR, 1977, Volume 236, Number 1, 72–74

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 178.168.20.213 January 5, 2021, 19:35:33

Академик АН МССР С. И. РАДАУЦАН, Н. Н. СЫРБУ, И. Г. СТАМОВ

ФОТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ГЕТЕРОПЕРЕХОДОВ $\operatorname{ZnP}_2(D_4^8) - \operatorname{ZnP}_2(C_{2h}^5)$

Полупроводниковые гетеропереходные структуры представляют значительный практический и научный интерес, позволяют расширить область применения активных элементов (¹⁻⁴).

В данной работе рассматриваются свойства гетеропереходной пары, образованной на базе соединения ZnP₂, существующей в двух модифика-

Рис. 1. Температурная зависимость вольт-амперных характеристик гетеропереходов $\operatorname{ZnP}_2(D_4^8) + \operatorname{ZnP}_2(C_{2h}^5)$ (цифры -t в °С)

циях: с пространственной группой C_{2h}^{5} и D_{4}^{8} . Гетеропереход формируется наращиванием β-фазы на α-фазу ZnP_{2} . Гетеропереход $ZnP_2(\alpha) -$ ZnP₂(β) обладает высокой рабочей $(\sim 450^{\circ} \text{ C}),$ температурой высокой фоточувствительностью с границей чувствительности в ближней и.-к. области (1,06 мкм), высокой химической инертностью, низкой температурой получения (860° С) и малым числом фаз.

Омическими контактами к α-модификации являются In или In : Sn, для β-модификации — Au. Контакты вплавляли в вакууме при температуре 350—400° С в течение 20—30 мин.

Анализ зависимостей тока от напряжения U и температуры t (рис. 1) показывает, что в переносе носителей участвует туннельно-рекомбинационный механизм. На прямой ветви (рис. 1A) наблюдается два линейных участка с коэффициентами

 $\eta_1 = 2,4 \text{ if } \eta_2 = 1, I = I_0 \exp(gV/\eta kT)$ (3). Интерпретация прямой ветви вольт-амперной характеристики в настоящее время затруднительна из-за отсутствия достаточно полных данных о свойствах ZnP₂, а также из-за влияния большого последовательного сопротивления. По-видимому, резкий рост тока связан с утечками или рекомбинацией на границе раздела. Наклон η₁=2,4 меняется незначительно с температурой. Такое поведение тока характерно при туннельно-рекомбинационном механизме. Анализ обратной ветви показывает, что в исследуемом интервале температур для напряжений до ~40 в зависимость тока от напряжения носит линейный характер. Для напряжений больше этой величины зависимость переходит в степенную с показателем от 1,7 до 5 как функция от температуры (рис. 2Б). Зависимости обратного тока от напряжения и температуры (рис. 2А) идентичны по характеру с характеристиками гетеропереходов *n*-Ge – *p*-GaAs, а также *n*-CdS – *p*-CdSe.

По аналогии можно предположить, что зависимость обратного тока от температуры и напряжения описывается зенеровским туннелированием электронов из валентной зоны β-ZnP₂ в зону проводимости α-ZnP₂. На рис. З представлен фотоответ рассматриваемого гетероперехода (кривая *a*), структура которого фоточувствительна в интервале 0,95—0,56 мкм. Интегральная чувствительность некоторых образцов сравнима с максимальной, полученной в системе Al_xGa_{1-x}As. Длинноволновая и коротковолновая границы чувствительности гетероструктуры определяются шириной запрещенных зон α-ZnP₂ (2,05 эв) и β-ZnP₂ (1,33 эв). Криван б представляет собой спектральное распределение λ-модулированного фото-

Рис. 2. A – обратные характеристики гетероперехода, B – зависимость $I_{\text{обр}}$ от температуры для U=1 в

ответа гетероперехода. Энергетическое положение E_0^1 (1,34 эв) п E_0^2 (2,05 эв) соответствует минимальным межзонным энергетическим питервалам α - и β -фазы ZnP_2 .

Тонкая структура α -модулированных спектров фотоответа гетеропереходов представлена кривыми *a*, *e* на рис. 4 (кривая *a* прописана при больших щелях по отношению к *б* для выделения структуры пиков 11-13). В спектрах λ -модулированного фотоответа наблюдаются отрицательные и положительные максимумы, энергетическое положение которых в порядке возрастания номеров следующее: 1,348 (1); 1,442 (2); 1,577 (3); 1,610 (4); 1,677 (5); 1,70 (6); 1,80 (7); 1,90 (8); 2,02 (9); 2,06 (10); 2,21 (11); 2,27 (12); 3,37 (13); 2,50 (14) эв.

Сравнивая энергетические положения обнаруженных максимумов с величинами оптических переходов в обеих модификациях ZnP₂ (4-6), можно заметить, что особенности фотоответа гетеропереходов, дифференцированных по длине волны, отражают структуру электронных переходов в кристаллах α- и β-фазы ZnP₂. Отрицательные максимумы (1-6) присущи моноклинной модификации, положительные (8-14) - тетрагональной модификации ZnP₂ (⁵, ⁶). Спектральные характеристики гетероперехода (кривые в – з) меняют полярность с положительной на отрицательную при изменении смещения от 18 в до 0. Это свидетельствует об изменении условий разделения носителей в области пространственного заряда, что можно использовать для управления спектральной чувствительностью гетероперехода. При нулевом смещении фотоответ гетероструктуры имеет противоположно направленные максимумы, так как разделение носителей для разных областей энергий (1,3 и 2,0 эв) происходит в соответствующих областях пространственного заряда α-и β-фазы ZnP₂.

В заключение отметим, что λ-модулированные спектры фотоответа гетеропереходов можно успешно использовать для анализа электронной

Рис. 3. Фотоответ и λ -модулированные спектры фотоответа гетероперехода $ZnP_2(D_4^8) - ZnP_2(C_{2h}^5)$

Рис. 4. Тонкая структура λ-модулированных спектров фотоответа гетероперехода: *a*, *6* – при смещении на гетеропереходе 15 в; *в*, *г*, *д*, *e*, *ж*, *s* – для смещений 12, 6, 3, 2, 1, 0 в соответственно

структуры полупроводников. Гетеропереходы α-ZnP₂—β-ZnP₂ требуют дальнейшего совершенствования и детального исследования, но приведенные данные представляют интерес с точки зрения создания структур с высокой чувствительностью в широкой области энергий и с управляемой спектральной характеристикой.

> Поступило 4 V 1977

Институт прикладной физики Академии наук МССР Кишинев

Кишиневский политехнический институт

ЛИТЕРАТУРА

¹ Ж. И. Алферов, В. А. Андреев и др., ФТП, т. 3, 930 (1969). ² Ж. И. Алферов, В. А. Андреев и др., там же, т. 3, 1324 (1969). ³ А. Милис, Д. Фойхт, Гетеропереходы и переходы металл — полупроводник, М., «Мир», 1975; А. R. Riben, D. Fencht, Solid State Electr., v. 9, 1055 (1966). ⁴ Э. И. Адирович, Ю. М. Юабов, Г. Р. Ягудаев, Сб. Фотоэлектрические явления в полупроводниках, в. 2, Ташкент, 1973, стр. 122. ⁵ V. V. Sobolev, N. N. Syrbu, T. N. Sushkevich, Phys. Status Solidi, v. 43, 73 (1971). ⁶ V. V. Sobolev, N. N. Syrbu, ibid., v. 51, 863 (1972).