

N. N. Syrbu, S. B. Khachaturova, S. I. Radautsan, Optical anisotropy of inverse hydrogen-like series lines in zinc diphosphide, *Dokl. Akad. Nauk SSSR*, 1986, Volume 288, Number 3, 615–617

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 178.168.20.213 January 4, 2021, 15:34:07

УДК 535.373.2 **ФИЗИКА**

Н.Н. СЫРБУ, С.Б. ХАЧАТУРОВА, академик АН МССР С.И. РАДАУЦАН

ОПТИЧЕСКАЯ АНИЗОТРОПИЯ ЛИНИЙ ОБРАТНОЙ ВОДОРОДОПОДОБНОЙ СЕРИИ В ДИФОСФИДЕ ЦИНКА

С длинноволновой стороны края основного поглощения $ZnP_2 \cdot C_{2n}^5$ наблюдаются водородоподобные серии линий поглощения — прямые, обусловленные свободными экситонными состояниями, и обратная, объясняемая связанным биэлектронно-примесным комплексом [1-4].

В данной работе рассматривается влияние поляризации и направления распространения падающей световой волны на оптические спектры обратной водородоподобной серии (ОВС) линий поглощения и отражения. Измерения проведены на спектрометрах СДЛ-1 и ДФС-24 при температурах 77 и 2 К.

В спектрах кристаллов ZnP2 при распространении света перпендикулярно оси \mathbf{c} ($\mathbf{K}\perp\mathbf{c}$) в поляризации $\mathbf{E}\perp\mathbf{c}$ обнаруживается OBC линий поглощения. При этом коэффициент поглощения в максимумах $n^0=4$ и $n^0=5$ равен 140 и 75 см⁻¹ соответственно. В поляризации $\mathbf{E}\perp\mathbf{c}$ и $\mathbf{K}\perp\mathbf{c}$ коэффициент поглощения в области $n^0=4$ и $n^0=5$ достигает значений 10^4 см⁻¹. Кристалл становится практически непрозрачным. В этой поляризации OBC проявляется в спектрах отражения (рис. 1a). Сопоставление спектров отражения в поляризации $\mathbf{E}\parallel\mathbf{c}$, $\mathbf{K}\perp\mathbf{c}$ и спектров поглощения в поляризации $\mathbf{E}\parallel\mathbf{c}$, $\mathbf{K}\perp\mathbf{c}$ и относительно линий в поляризации $\mathbf{E}\perp\mathbf{c}$. При этом величина смещения увеличивается по мере уменьшения квантового числа n^0 . Линии отражения образуют OBC с пределом сходимости, расположенным в более высокоэнергетической области, чем предел сходимости OBC в $\mathbf{E}\perp\mathbf{c}$. В поляризации $\mathbf{E}\parallel\mathbf{c}$ наиболее интенсивные максимумы, наблюдаемые в спектрах люминесценции, коррелируют с минимумами отражения [1].

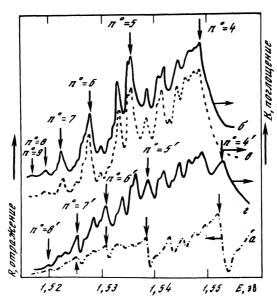
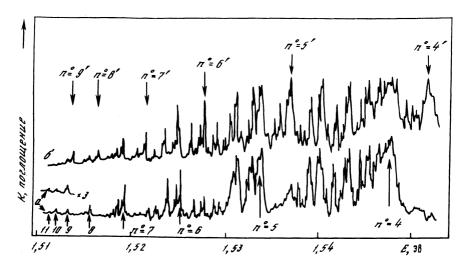



Рис. 1. Спектры отражения кристаллов ZnP_2 при 77К поляризации $E \parallel c$, $K \perp c$ (a) и пропускания в поляризации $E \perp c$ при $K \parallel a$ (б), $K \parallel b$ (в), $K \parallel c$ (г)

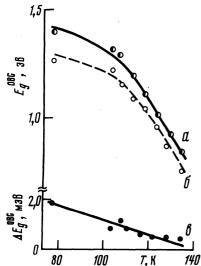


Рис. 2. Спектры поглощения кристаллов ZnP_3 при 2K в поляризации $E \perp c$ при направлении распространения света $K \parallel c$ (a) и $K \parallel b$ (б)

Рис. 3. Температурные зависимости пределов сходимости ОВС в поляризациях $E \parallel c\ (a)$, $E \perp c\ (\emph{б})$ и $\Delta E_g^{\mathrm{OBC}}\ (\emph{s})$

В области ОВС спектры поглощения измерены при 77 К в поляризации $\mathbf{E} \perp \mathbf{c}$ при распространении света в направлениях $\mathbf{K} \parallel \mathbf{a}, \ \mathbf{K} \parallel \mathbf{b}$ и $\mathbf{K} \parallel \mathbf{c}$ (рис. 16, 6, ϵ). При распространении света вдоль осей \mathbf{a} и \mathbf{b} величина коэффициента поглощения удовлетворяет неравенству K, см $^{-1}$:

$$K(E \perp c, K \parallel c) > K(E \parallel a, K \parallel c) > K(E \parallel a, K \perp c, K \parallel a)$$
.

В поляризации $\mathbf{E} \perp \mathbf{c}$ при $\mathbf{K} \parallel \mathbf{c}$ в спектрах поглощения с коротковолновой стороны головных линий n^0 проявляются дополнительные линии, обозначенные $n^0=4,5,6...$ Сопоставляя спектры отражения в области ОВС в поляризации $\mathbf{E} \parallel \mathbf{c}$, $\mathbf{K} \perp \mathbf{c}$ с энергетическим положением $n^0=4,5,6...$, видим, что в спектрах поглощения в поляризации $\mathbf{E} \perp \mathbf{c}$, $\mathbf{K} \parallel \mathbf{c}$ обнаруживаются линии ОВС, присутствующие в поляризации $\mathbf{E} \perp \mathbf{c}$, $\mathbf{K} \perp \mathbf{c}$, и появляются линии, которые содержатся в спектрах отражения в $\mathbf{E} \parallel \mathbf{c}$, $\mathbf{K} \perp \mathbf{c}$.

Некоторые линии $(n^0=5\ \ \text{и}\ n^0=4)$ проявляются и в поляризации $\mathbf{E}\perp\mathbf{c}, \mathbf{K}\perp\mathbf{c},$ но с меньшей интенсивностью. Последнее возможно в силу того, что в $\mathbf{E}\parallel\mathbf{c}, \ \mathbf{K}\perp\mathbf{c}$

коэффициент поглощения составляет 10^4 см $^{-1}$. Тогда в поляризации $\mathbf{E} \perp \mathbf{c}$, $\mathbf{K} \parallel \mathbf{c}$ линии $n^0 = 4, 5, 6 \dots$ обнаруживаются как остаточные из-за нестрогой ориентации. Коэффициент поглощения на линиях $n^0 = 4,5$ составляет $(2-4)\cdot 10^2$ см $^{-1}$. Таким образом, в поляризации $\mathbf{E} \perp \mathbf{c}$, $\mathbf{K} \parallel \mathbf{c}$ присутствуют линии, укладывающиеся в две ОВС. При распространении света вдоль $\mathbf{K} \perp \mathbf{c}$ одна присутствует в поляризации $\mathbf{E} \parallel \mathbf{c}$ в спектрах отражения, другая в $\mathbf{E} \perp \mathbf{c}$ в спектрах поглощения. Последнее подтверждает анизотропию ОВС.

При 77 К энергетическое положение линии $n^0=4'$ равно 1,5517, 5'-1,5376, 6'-1,5880, 7'-1,5234 и 8'-1,5200 эВ. Постоянная Ридберга для серии $n^0=4'$, 5', 6', ... равна 0,712 эВ и предел сходимости 1,508 эВ. Для линий ОВС $n^0=4$, 5, 6... постоянная Ридберга 0,663 эВ, а предел сходимости 1,506 эВ. Предел сходимости ОВС в Е || с, **K** \perp с соответствует пределу сходимости $n^0=4'$, 5', 6'... в Е \perp с, **K** || с. Пределы сходимости серий $n^0=4$, 5, 6... и $n^0=4'$, 5', 6'... отличаются на $\Delta E_g^{OBC}=2$ мэВ (77К).

В спектрах поглощения в поляризации $\mathbf{E} \perp \mathbf{c}$ и направлении света $\mathbf{K} \parallel \mathbf{c}$ и $\mathbf{K} \parallel \mathbf{b}$ при 2 K, также и при 77 K, в поляризации $\mathbf{E} \perp \mathbf{c}$ и $\mathbf{K} \parallel \mathbf{c}$ появляются дополнительные линии с коротковолновой стороны линий OBC (рис. 2). Линии при этом содержат тонкую структуру. Появляющиеся (усиливающиеся) линии обозначены индексами $n^0 = 4', 5', 6', \ldots$ Предел сходимости OBC с n^0 (без штрихов, т.е. в $\mathbf{E} \perp \mathbf{c}$, $\mathbf{K} \parallel \mathbf{b}$) при 2K равен 1,506 эВ, постоянная Ридберга 0,772 эВ. Предел сходимости линий n^0 (со штрихами, т.е. в $\mathbf{E} \perp \mathbf{c}$, $\mathbf{K} \parallel \mathbf{c}$) 1,509 эВ, а постоянная Ридберга 0,728. Спедовательно, при 2K ОВС также поляризована. Величина разности пределов сходимости $\Delta \dot{E}_g^{OBC} = E_g^{OBC} (\mathbf{E} \parallel \mathbf{c}) - E_g^{OBC} (\mathbf{E} \perp \mathbf{c})$ равна $(2,2\pm0,2)$ мэВ. Величина ΔE_g^{OBC} обусловлена расщеплением из-за обменного взаимодействия уровня положительно заряженного центра, на котором связан биэлектрон. Предполагается, что положительно заряженный локальный центр обусловлен атомами цинка (вакансиями фосфора), периодически распределенными в решетке.

С ростом температуры (77–170К) пределы сходимости в обеих поляризациях, а также $\Delta E_g^{\rm OBC}$ уменьшаются (рис. 3). Уменьшение величины расщепления предела сходимости OBC с ростом температуры может быть обусловлено увеличением перекрытия волновых функций, ответственных за обменное взаимодействие.

Кишиневский политехнический институт им. С. Лазо

Поступило 13 VIII 1985

ЛИТЕРАТУРА

1. Певцов А.Б., Пермогоров С.А., Селькин А.В. и др. — ФТП, 1982, т. 16, вып. 5, с. 1399. 2. Селькин А.В., Стамов И.Г., Сырбу Н.Н., Уманец А.Г. — Письма ЖЭТФ, 1982, т. 35, вып. 2, с. 51. 3. Сырбу Н.Н., Стамов И.Г., Радауцан С.И. — ДАН, 1982, т. 262, № 5, с. 1138. 4. Сырбу Н.Н., Стамов И.Г., Радауцан С.И. — Изв. АН МССР. Сер. физ. техн. и матем. наук, 1982, № 1, с. 27.