

N. N. Syrbu, I. G. Stamov, S. I. Radautsan, Fine structure of absorption lines in crystals of ZnP_2 of monoclinic modification, *Dokl. Akad. Nauk SSSR*, 1982, Volume 262, Number 5, 1138–1142

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 178.168.20.213 December 29, 2020, 15:36:43

или 7,5 ат.% Аѕ на подвижной металлической поверхности с комнатной температурой, т.е. не оптимальных по составу сплавов, и до не оптимальной температуры охлаждения. Условия закалки оказывают существенное влияние на достигаемый эффект изменения T_{κ} . Например, максимальная T_{κ} медленно охлажденных сплавов свинца с оловом не превышает 7,3 К, при охлаждении расплавов со скоростью 10^6-10^8 К/с на металлической поверхности с комнатной температурой – повышает ся до 7,5 К, а при тех же скоростях охлаждения на металлической поверхности, охлажденной жидким азотом (77–100 K), – до 7,8 К.

Способность свинца к самопроизвольному отпуску при комнатной температуре [2] обусловливает сравнительно быстрый возврат свойств чистого свинца после быстрой закалки; также даже небольшой нагрев (например, до 373 К) быстрозакаленных двойных сплавов, вызывая распад метастабильных твердых растворов, в большинстве случаев приводит к сравнительно быстрому возврату исходных T_{κ} (рис. 2). Повышение T_{κ} наблюдается только у твердых растворов свинца с непереходными металлами IV и V групп Периодической системы. К уже указанным выше элементам (Bi, Sn), повышающим T_{κ} свинца в равновесном и быстрозакаленном состояниях, присоединяются еще кремний и германий, т.е. элементы, находящиеся в той же, что и свинец, группе Периодической системы, но более отличающиеся от него по свойствам (по сравнению с Sn).

Институт металлургии им. А.А. Байкова Академии наук СССР, Москва

Поступило 22 VI 1981

́ ЛИТЕРАТУРА

1. Roberts B.W. – J.Phys.Chem.Ref.Data, 1976, vol. 5, № 3, p. 581. 2. Хансен М., Андерко К. Структуры двойных сплавов. М.: ГНТИЛЧЦМ, 1962. 3. Эллиот Р.П. Там же. М.: Металлургия, 1970. 4. Шанк Ф. Там же, 1973. 5. Gschneidner К.А., McMasters O.D. – Monatsh.Chem., 1971, Bd. 102, H. 5, p. 1499. 6. El-Bodary M., Chand J.K., Mayer H.W., Schubert K. – Z.Metallkunde, 1972, Bd. 63, H. 11, p. 751. 7. Ray R., Hahn S.H., Giessen B.C. – Acta Metallurg., 1972, vol. 20, № 12, p. 1335. 8. Nembarch E. – J.Phys.Chem.Solids, 1968, vol. 29, p. 1205. 9. Fromm E., Gebhardt E. Gase und Kohlenstoff in Metallen.B.; N.Y.: Springer-Verlag, 1976. 10. Tsuei C.C., Johnson W.L. – Phys.Rev., 1974, vol. B9, p. 4742.

УДК 535.373.2

ФИЗИКА

Н.Н. СЫРБУ, И.Г. СТАМОВ, академик АН МССР С.И. РАДАУЦАН

ТОНКАЯ СТРУКТУРА ЛИНИЙ ПОГЛОЩЕНИЯ В КРИСТАЛЛАХ ZnP₂ МОНОКЛИННОЙ МОДИФИКАЦИИ

В настоящей работе исследованы спектры поглощения в кристаллах $ZnP_2-C_{2h}^5$, состоящие из девяти линий, укладывающихся в обратную водородоподобную серию, и шести линий, сходящихся в коротковолновую сторону. Спектры обнаруживаются при 78,5 К и исчезают при температуре 230 К. Линии серии содержат тонкую структуру (далее будут называться компонентами), также укладывающуюся в сериальную водородоподобную зависимость. Компоненты сходятся в коротковолновую сторону спектра.

Оптические свойства монокристаллов ZnP₂ изучались в работах [1-5], в которых исследованы спектры поглощения, отражения и люминесценции в области

Рис. 1. Модулированные по длине волны спектры поглощения монокристаллов ZnP_2 - C_{2h}^5 в поляризации Е 1 С в области 7000-8000 Å (T', T'' – первая и вторая производные по λ)

Рис. 2. Тонкая структура обратной водородоподобной серии и ее компонент в кристаллах ZnP,

края фундаментального поглощения. Однако водородоподобность спектров не обнаружена.

На рис. 1 показана первая (T') и вторая (T'') производные по длине волны спектров поглощения кристаллов $ZnP_2-C_{2n}^5$ в поляризации $E \perp C$ при 78,5 К в области 8000–7700 Å. В спектрах разрешены линии $n = 1, \ldots, 6$ (табл. 1) и $K = 2, \ldots, 5$. Обнаруженные линии описываются водородоподобной сериальной зависимостью с постоянной Ридберга 0,0634 зВ и $E_g = 1,5945$ зВ при 78,5 К (условно серия B).

Приведенная эффективная масса $\mu = 0,437 m_0$, а температурный коэффициент смещения $\Delta E_g / \Delta T = 0,09 m$, эВ/К. В области 8000—8225 Å обнаруживается другая серия, состоящая из 9 (для некоторых образцов из 10) линий, сходящихся к некоторой пороговой энергии $E_g^{\infty} = 1,5019$ эВ при 77 К и 1,5058 эВ при 78,5 К. Линии описываются выражением

$$E_K = 1,5058 + \frac{0,6955}{n^{02}}, 3B.$$

Таблица 1

Энергии экситонных переходов в кристаллах ZnP_2 - C_{2h}^5 , определенных по поглощению в поляризации E1 C

Серия	90 K		78,5 K			
	Зона	Е _{эксп} , эВ	<i>Е</i> _{эксп} , эВ	Е _{расч} , эВ	Δ <i>Е</i> , мэВ	R, Eg
(10)	1				1 1	
$B\left(\frac{dR}{d\lambda}\right)$	n = 1	1,5524	1,5562	1,5311	25,1	<i>R</i> = 0,0634,
	2	1,5750	1,5786	1,5786	0	$E_{\sigma} = 1,5945$
	3	1,5852	1,5874	1,5874	0	8
	Eg	1,5934 (расчет)		1,5945		•
$B\left(\frac{dK}{d\lambda}\right)$	n = 1	-	1,5556	1,5288	26,8	R = 0,0677,
(200)	2		1,5795	1,5795	0	$E_{\sigma} = 1.5955$
	3	•	1,5889	1,5889	0	8
	4		1,5926	1,5923	0,3	
	5	•	1,5938	1,5938	0	
	6		1,5948	1,5947	0,1	•

Таблица 2

Энергетические положения обратной водородоподобной серии в ZnP₂-C⁵_{2h} при 78,5 К

Зона	<i>Е</i> _{эксп} , эВ	Е _{расч} , эВ	ΔE , мэВ
$n^{\circ} = 1$		2,2013	1
2		1,6797	
3	1,5792	1,5830	3,8
4	1,5465	1,5493	2,8
5 [.]	1,5336	1,5336	0
6	1,5251	1,5221	0
7	1,5202	1,5199	0,3
8	1,5167	1,5167	0,0
9	1,5151	1,5144	0,7
10	1,5145	1,5128	0,7
11	1,5113	1,5115	0,2
$E_{\sigma\infty}$,		1,5058	
R[°] = 0,5733			

В табл. 2 приведены все линии обратной серии n = 3, ..., 11, полученные при 78,5 К (они обозначены индексом "ноль"). Приведенная эффективная масса $\mu = 3,4 m_0$ при N = 3,0 (N – показатель преломления). Линии $n^0 = 3, ..., 11$ находятся в области прозрачности кристалла, а линии $n^0 = 1$ и 2 попадают в область собственного поглощения.

Линии обратной серии обнаруживают тонкую структуру, число компонент которой определяется квантовым числом n^0 (рис. 2). Компоненты определяются числом K, и для $n^0 = 4$ они начинаются с K = 5, т.е. $n^0 \pm 1$. Линии компонент удовлетворяют условию водородоподобности:

$$E_K = 1,5491 - \frac{0,2873}{K^2}$$
, 3B

Таблица З

Зона	78,5	78,5 К (обр. № 17)			90 К (обр. № 11)		
	Е _{эксп} , эВ	Ерасч, эВ	ΔE , мэВ	Е _{эксп} , эВ	Е _{расч} , эВ	ΔE , мэВ	
		n°=	3, R = 0,1214	11 \$		1	
K = 2	1,5657	1,5527	0				
3	1,5696	1,5696	0				
4	1,5755	1,5755	2,0				
5	1,5762	1,5782	2,0				
$E_{g\infty}^{3}$		1,5831		٠			
•		n ⁰ =	4, <i>R</i> = 0,287	3			
K = 5	1,5396	1,5396	0	1,5375	1,5367	0,8	
6	1,5425	1,5425	0	1,5402	1,5402	0	
7	1,5444	1,5443	0,9	1,5423	1,5423	0	
8	1,5459	1,5454	0,8	1,5436	1,5437	0,1	
. 9 :	1,5469	1,5462	1,1	1,5442	1,5446	0,4	
$E_{g\infty}^4$		1,5491			1,5481		
$n^{\circ} = 5, R = 0.2536$							
K = 4	1,5273	1,5251	2,2	1,5254	1,5239	1,5	
5	1,5307	1,5307	0	1,5287	1,5287	0	
6	1,5338	1,5338	0	1,5313	1,5313	0	
. 7	1,5336	1,5357	2,1	1,5317	1,5329	1,2	
		1,5409		1,5372			
		n ⁰ =	6, R = 0,3964	ļ.			
K = 7	1,5226	1,5219	0,7	1,5216	1,5210	0,6	
8	1,5238	1,5238	0	1,5224	1,5224	0	
9	1,5251	1,5251	۰ 0	1,5234	1,5234	0	
$E_{g^{\infty}}^{6}$.		1,5300			1,5272		

Энергии линий поглощения компонент обратной водородоподобной серии в кристаллах ZnP₂-C⁵_{2h}

При этом линии сбегаются в коротковолновую сторону к $E_g^4 = 1,5491$ эВ (78,5 К), как в случае обычных экситонных серий. Для линий $n^0 = 3$ обнаружены четыре компоненты K = 2, 3, 4, 5 (рис. 1), которые удовлетворяют условию

$$E_K^3 = 1,5831 - \frac{0,1214}{K^2}$$
, B_R

и начинаются с $K = n^0 - 1$ (т.е. с K = 2). Все линии компонент при температурах 78,5 и 90 К представлены в табл. 3. Для линии $n^0 = 5$ обнаруживаются четыре компоненты (K = 4, 5, 6, 7), которые сбегаются к $E_g^5 = 1,5409$ зВ (78,5 К) и 1,5372 зВ (90 К). Линии компоненты удовлетворяют сериальной зависимости

$$E_K = 1,5409 - \frac{0,2536}{K^2}, \ \mathbf{3B},$$

и начинаются с линии $K = n^0 - 1$, т.е. с четвертой линии. Для линии $n^0 = 6$ обратной серии обнаруживаются три компоненты K = 7, 8, 9, которые также удовлетворяют условию

$$E_K = 1,5300 - \frac{0,3964}{K^2}, \ B.$$

Серия начинается с компоненты $K = n^0 + 1$ (т.е. с K = 7). Линия $n^0 = 7$ расщепляется на две: 1,5202 и 1,5196 эВ.

Линии $n^0 = 1$ и 2 не проявляются, а для линий более высокого порядка $n^0 = 8, 9, 10$ и 11 не удается наблюдать компоненты при 78,5 К из-за их слабой интенсивности. Измерения обратной серии, проведенные в обеих поляризациях Е I C и E1 C, показывают отсутствие анизотропии, т.е. в обеих поляризациях присутствуют все линии и их компоненты. В этом кристалле в поляризации E I C присутствуют еще серии A и C [6], которые не обнаруживаются в поляризации E L C. Все три серии A, B и C содержат до $n = 1, \ldots, 6$ при 78,5 К и обнаружены по поглощению ($n = 1, \ldots, 3$) и λ -модулированному поглощению ($n = 1, \ldots, 6$). Экситонные серии A, B и C сильно поляризованы и отражают сложную структуру верха валентной зоны. Обратная серия является неполяризованной.

При экспериментальных исследованиях экситонных состояний в кристалле BiJ₃ обнаружена водородоподобная серия резонансных линий поглощения и излучения, сходящихся не в коротковолновую, как обычно, а в длинноволновую область спектра, которая объяснялась образованием биэлектронных состояний [7–10]. Причем обратный порядок следования серии объяснялся отрицательной приведенной эффективной массой носителей заряда [11]. В работах [12, 13] высказывались сомнения относительно существования обратной водородоподобной серии в BiJ₃, а линии поглощения объяснялись переходами с уровней донорно-акцепторных пар, расположенных в слоях с гексагональной упаковкой. Существование биэлектронных состояний в твердом теле вполне зероятны [11]. Кристаллы ZnP_2 не принадлежат классу слоистых кристаллов и не обладают гексагональной упаковкой. Тем не менее в ZnP_2 обнаружены 11 линий поглощения, составляющих обратную серию, которая существует одновременно с прямыми экситонными сериями поглощения A, B и C. Обратная серия обнаруживается в спектрах люминесценции, фотопроводимости и в спектрах отражения.

Как известно, в отражении проявляются только собственные электронные спектры. Можно предположить, что в ZnP_2 обратная серия обусловлена биэлектронными состояниями, но при этом не удается объяснить сущ⁻ твование подсерий на каждой линии.

Представленные в данной работе результаты требуют рассмотрения других более сложных моделей взаимодействия между электронами в кристалле.

Кишиневский политехнический институт им. С. Лазо Поступило 22 V 1981

ЛИТЕРАТУРА

1. Sobolev V.V., Syrbu N.N. – Phys. Status Solidi, 1972, vol. 51, p. 863. 2. Sobolev V.V., Syrbu N.N. – Ibid., 1971, vol. 43, p. 73. 3. Сырбу Н.Н., Стамов И.Г., Хачатурова С.Б. – Физ. и техн. полупроводников, 1979, т. 13, в. 9, с. 1734. 4. Горбань И.Г., Луговской В.В., Маковецкая А.П. и др. – Там же, 1974, т. 8, в. 2, с. 436. 5. Лазарев В.В., Вавилов В.С., Чукичев М.В. и др. – Там же, 1978, т. 12, в. 4, с. 643. 6. Певцов А.Б., Пермогоров С.А., Селькин А.В. и др. – Там же, 1982, т. 16, № 5. 7. Гросс Е.Ф., Парель В.И., Шехмаметьев Р.И. – Письма ЖЭТФ, 1971, т. 13, с. 503. 8. Гросс Е.Ф., Уральцев И.Н., Шехмаметьев Р.И. – Там же, 1971, т. 13, с. 320. 9. Гросс Е.Ф., Старостин Н.В., Шехмаметьев Р.И. – ФТТ, 1971, т. 13, с. 393. 9. Гросс Е.Ф., Федоров Д.Л., Шехмаметьев Р.И. – Там же, 1972, т. 14, № 11, с. 3252. 10. Гросс Е.Ф., Са., ростин Н.В., Шепилов М.П., Шахмаметьев Р.И. – Изв. АН СССР. Сер. физич., 1973, т. 37, № 4, с. 885. 11. Старостин Н.В., Шепилов М.П. – Укр. физ. журн., 1980, т. 25, № 10, с. 1708. 12. Сгајат W., Нагьеке G., Клизьиег L. et al. – Solid State Commun., 1973, vol. 13, № 9, p. 1445. 13. Лисица М.П., Моцный Ф.В. – Укр. физ. журн., 1976, т. 21, № 6, с. 1025.