2009, Volume 79, Issue 21, pag. 214509

Josephson effect in superconductor/ferromagnetnormal/superconductor structures

Karminskaya T. Yu., Golubov A. A., Kupriyanov M. Yu., Sidorenko, A. S.

https://doi.org/10.1103/PhysRevB.79.214509

Abstract

The critical current I_C of superconductor/ferromagnetnormal/superconductor (S/FN/S) Josephson junctions is calculated in the framework of linearized Usadel equations. The dependence of I_C on the distance L between superconductors and thicknesses $d_{F,N}$ of ferromagnetic and normal layers is analyzed. It is shown that $I_C(L,d_F)$ may exhibit damping oscillations as a function of both arguments. The conditions have been determined under which the decay length and period of oscillation of $I_C(L)$ at fixed d_F are on the order of decay length of superconducting correlations in the N metal, ξN , that is much larger than in F film. We demonstrate also that the positions of the points $L=L_n$, at which $I_C=0$ exhibit damping oscillations as a function of d_F . The number of transitions from 0 to π states in $I_C(L, d_F)$ increases under $L \rightarrow L_n$. Outside these narrow intervals of L around L_n sign and value of I_C are independent on d_F for $d_F \gtrsim \xi F$. This fact is important for possible applications of S/FN/S Josephson junctions and S/FNF/S spin valve Josephson devices.