Interference Effects of the Superconducting Pairing Wave Function due to the Fulde-Ferrell-Larkin-Ovchinnikov like State in Ferromagnet/Superconductor Bilayers

V. I. Zdravkov^{1,2}, J. Kehrle¹, G. Obermeier¹, A. Ullrich¹, S. Gsell¹, D. Lenk¹, C. Müller¹, R. Morari², A. S. Sidorenko², V. V. Ryazanov³, L. R. Tagirov^{1,4}, R. Tidecks¹, and S. Horn¹

¹Institut für Physik, Universität Augsburg, D-86159 Augsburg, Germany

²Institute of Electronic Engineering and Nanotechnologies ASM, MD2028 Kishinev, Moldova
³Institute of Solid State Physics, Russian Academy of Sciences, 132432 Chernogolovka, Russia
⁴Solid State Physics Department, Kazan State University, 420008 Kazan, Russia

Abstract

The theoretical description of the Fulde-Ferrell-Larkin-Ovchinnikov like state establishing in nanostructered bilayers of ferromagnetic (F) and superconducting (S) material leads to critical temperature oscillations and reentrant superconductivity as the F-layer thickness gradually increases. The experimental realization of these phenomena is an important prerequisite for the fabrication of the Ferromagnet/Superconductor/Ferromagnet core structure of the superconducting spin-valve. A switching of the spin-valve is only expected if such non-monotonic critical temperature behavior is observed in F/S bilayers as well as in the S/F bilayers, a combination of which the spin-valve core structure can be regarded to consist of. In our former investigations we could demonstrate the required non-monotonic behavior of the critical temperature in S/F bilayers. In this study we succeeded in the preparation of F/S bilayers, where the superconducting material is now grown on top of the ferromagnetic layer thickness as well as an extinction and recovery, *i.e.* a reentrant behavior, of superconductivity. Especially, the latter is necessary to obtain a spin-valve with a large critical temperature shift between the parallel and antiparallel configurations of magnetizations in the F layers.