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The influence of fractal geometry on superconductivity has been analyzed for superconductors with 
different Euclidean dimensions. The complexity of fractal structures gives rise to a „multi-crossover“ 
behavior in one-dimensional Nb/Cu fractal multilayers, „quasi-2D Parks-Little effect“ for two-
dimensional fractal networks, and temporal fractality for three-dimensional high-Tc superconducting 
ceramic samples. Artificial fractal structures serve as a suitable model object for simulations and for 
experimental studies of disordered superconductors and superconducting devices with complicated 
topology.  
 
INTRODUCTION 

The last two decades witnessed an explosive growth in theoretical and experimental contributions to 
fractal geometry. It is of general interest to investigate how familiar physical properties are modified in 
fractals, first because of numerous examples of fractal structures in nature, and second because of their 
similarity to inhomogeneous materials. At the same time novel superconducting materials and devices 
with complicated topology raised new problems and questions. How does the complexity of billion 
interconnections of superconducting computer with Josephson junctions influence its parameters? How 
strong is the influence of the fractal geometry in a superconducting cable consisting of thousands of thin 
superconducting filaments in a non-superconducting matrix? What is the origin of long-time relaxation 
processes in magnetic field observed in high-Tc superconductors? Some of these problems of 
superconducting systems with fractal structure are discussed. 
 
1. ONE-DIMENSIONAL FRACTAL MULTILAYERS 

The Nb/Cu multilayers (ML) were prepared in an ultrahigh vacuum system (base pressure 10-10 mbar) 
onto sapphire substrates using computer-controlled electron beam evaporation, details of the system 
have been described elsewhere [1]. The geometry of prepared fractal ML followed the triadic Cantor set 

[2]. By varying the dividing factor r (0 < r < 0.5) we 
could change a fractal dimension of the multilayer, Df = 
ln2/ln(1/r), and obtained structures with a fractal 
dimension between two limits Df = 0 (for a single film r = 
0) and Df = 1 (for a periodic ML r  = 0.5). The total 
thickness dtot of  a fractal multilayer Sn with a number of 
repeat scales n is given by dtot(Sn)=(1/r)n-1(d/r). The type 
of layering of ML strongly determines their Tc  and Bc2(T) 
behavior, as one can see in Fig.1 and Fig.2. The critical 
temperature  for fractal ML decreases with increasing of 
the fractal scales number n, according to a scaling model 
calculated by Yuan and Whitehead [3], while for simple 
periodic ML it remains constant with increasing number 
of periods p. The influence of fractality on a critical 
magnetic field parallel to the layers is demonstrated in 
Fig.2, where data for samples with different geometries 
(single Nb film, periodic ML, and fractal ML) are 
presented. At low temperatures all samples show a two-
dimensional behavior, i.e. square-root dependence Bc2II(T) 
~ (1 – T/Tc)

1/2. The single film clearly exhibits the 2D 
behavior of Bc2II(T) at all temperatures T < Tc , whereas 
the dependence Bc2II(T) for fractal ML and periodic ML 
distinctly changes above the crossover temperature Tcr 

Fig.1. Tc of fractal and periodic Nb/Cu  
ML vs.   inverse Nb-thickness 1/d. Solid 
lines are guides to the eye. Dashed 
curves show the theoretical calculation 
[3] for fractals S1, S2, S3 with Df  = 0.63. 
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Fig.3. a) An electron micrograph of a fourth-order Sierpinski gasket, prepared from 100 nm thick Al 
film;      
b) The superconducting transition temperature as a function of external  magnetic  field, Tc(B),  for the 
Sierpinski gasket [6]. 

(marked by arrows). In the region Tcr < T < Tc , Bc2II(T) can be described by 
Bc2II(T) ~ (1 – T/Tc) 

f                                                                (1) 
 

where the exponent  f  strongly depends on the 
type of layering: for periodic ML three-
dimensional behavior with f  = 1 is observed, 
whereas fractal ML  shows f = 0.75. According 
to the scaling theory [4] near Tc a temperature 
dependent superconducting coherence length 
ξ⊥(T) becomes successively comparable to the 
different fractal scales (n = 1,2,3,..). This leads 
to the „multi-crossover“ or fractal behavior of 
the parallel critical magnetic field Bc2II(T) with 
non-integer exponent  f. 
 

 
2. TWO-DIMENSIONAL FRACTALS –  

SIERPINSKI  GASKET 

A family of regular fractal networks – Sierpinski 
carpet (SC) and Sierpinski gasket (SG) have an 
Euclidean dimension d = 2, and fractal 
dimension Df  = ln3/ln2 = 1.585 for SG and Df   

= 1.8928 for SC [2]. Because of their dilatonal symmetry, statistical, mechanical, transport and 
superconducting properties of SG are exactly solvable, making these fractals an attractive model system. 
Experimental measurements of the superconducting-to-normal phase boundary, Tc(B),   for SG-fractal 
network, prepared from superconducting Al thin film, demonstrate a very unusual oscillating behavior 
of the transition temperature (Fig.3b) with a fine structure as a consequence of Parks-Little effect in a 
two-dimensional network of holes. Self-similarity of the fine structure of the Tc(B) oscillations is 
described by the Goldman equation [6]   
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T / Tc 

Fig.2. Parallel critical magnetic field Bc2II(T) vs. 
reduced temperature T/Tc for a single Nb film S0, 
a periodic ML  P6, and fractal  S3 with Df = 0.63, 
dNb = 175 Å. 
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 Fig.4. Cross-section of the Nb3Sn 
multifilament commercial cable,  
produced by Airco Company [5]. 

∆Tc/Tc0 (φ/φ0 = 0.5) = [ξ(0)/L0]
2 arccos2[ε(φ/φ0= 0.5)/z ] = 0.024                    (2) 

here φ0 = hc/2e is elementary flux quantum, ξ(0) =0.26 mkm 
is the GL-coherence length of the Al film, z is the node 
coordination number of the Sierpinski gasket (z = 4 for the 
planar SG), L0=1.73 mkm is the length of the Al elementary 
triangle in the gasket (Fig.3a). Experimentally, the critical 
temperature decreasing in magnetic field at the points φ/φ0 = 
0.5 is ∆Tc/Tc0 (φ/φ0 = 0.5) = 0.025 is in perfect agreement 
with theoretical equation (2). The last result reflects a direct 
influence of fractal complexity on superconductivity. One 
can compare the artificially prepared  Sierpinski gasket in 
Fig.3a with the real picture of  fractal-like structure  of a 
multifilament superconducting cable (Fig. 4) and make 
conclusion about necessity to take into account the  influence 
of fractal geometry on superconducting properties of such 
materials. 
 
3. THREE-DIMENSIONAL SUPERCONDUCTING 
FRACTALS 

3D fractals demonstrate a more complex behavior, than the 
1D multilayers or 2D networks. Properties of the 3D fractals 
are characterized by either spatial or temporal fractality. One 
of the „natural“ 3D fractal system is the high-Tc ceramic 

oxide, where the long-time relaxation effects are observed.  
The relaxation of the thermoremanent magnetization M (the quantity of magnetization, remained in 
superconductor after switching off the external magnetic field) was investigated as a function of time for 
various high-Tc ceramics, using rf-SQUID magnetometer [7]. As one can see in Fig.5, where results for 

some investigated samples are shown, all the experimental 
time-dependences M(t) are well described by the 
logarithmic law 

M(t) = M0 – Alnt,                               (3) 
where the remanet magnetization at the moment t = 0, M0 , 
and decay rate,  A , are constants. This relaxation behavior 
(3) is caused by existence of the hierarchy of 
superconducting loops in the fractal network of ceramics 
(„Sierpinski pyramid“, a three-dimensional variant of the 
planar Sierpinski gasket, serves as a mathematical model of 
such porous media). This leads to a wide range of 
relaxation times for magnetic flux motion, and, as a result 
the temporal fractal behavior of the superconducting 
porous media in magnetic field is observed. 
 
4. CONCLUSION 

One can see that the complexity of superconducting 
systems with fractal geometry directly influences their 
main properties. This correlation between geometry and 
superconducting properties should be taken into account 
when one designs superconducting devices and materials 
with complex topology. 

 
Fig. 5. Time dependences of the 
thermoremanent magnetization M(t) for 
YBa2Cu3O7-x  (1), Bi2Sr2CaCu2O10-x  (2), 
and BaPb0.75Bi0.25O3  (3) polycrystalline 
samples. T = 4.2K,  external magnetic 
field  B = 2 mT. 
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