Vibrational properties of CdGa₂S₄ at high pressure

Cite as: J. Appl. Phys. **125**, 115901 (2019); doi: 10.1063/1.5080503 Submitted: 9 November 2018 · Accepted: 28 February 2019 · Published Online: 19 March 2019

S. Gallego-Parra, ¹ O. Gomis, ^{2,a)} R. Vilaplana, ² H. M. Ortiz, ^{1,3,4} E. Pérez-González, ⁵ R. Luna, ² P. Rodríguez-Hernández, ⁵ A. Muñoz, ⁵ V. V. Ursaki, ⁶ I. M. Tiginyanu, ⁷ and F. J. Manjón ¹

AFFILIATIONS

- ¹Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain
- ²Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain
- ³CINVESTAV-Departamento de Nanociencia y Nanotecnología, Unidad Querétaro, 76230 Querétaro, México
- Proyecto Curricular Licenciatura en Física, Universidad Distrital "Fco. Jose de Caldas", Bogotá, Colombia
- ⁵Departamento de Física, Instituto de Materiales y Nanotecnología, MALTA Consolider Team, Universidad de La Laguna, 38205 Tenerife, Spain
- ⁶Chitu Institute of Electronic Engineering and Nanotechnologies, 2028 Chisinau, Moldova
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova

ABSTRACT

Raman scattering measurements have been performed in cadmium digallium sulphide (CdGa₂S₄) with defect chalcopyrite structure up to 25 GPa in order to study its pressure-induced phase transitions. These measurements have been complemented and compared with lattice-dynamics *ab initio* calculations including the TO-LO splitting at high pressures in order to provide a better assignment of experimental Raman modes. In addition, experimental and theoretical Grüneisen parameters have been reported in order to calculate the molar heat capacity and thermal expansion coefficient of CdGa₂S₄. Our measurements provide evidence that CdGa₂S₄ undergoes an irreversible phase transition above 15 GPa to a Raman-inactive phase, likely with a disordered rock salt structure. Moreover, the Raman spectrum observed on downstroke from 25 GPa to 2 GPa has been attributed to a new phase, tentatively identified as a disordered zinc blende structure, that undergoes a reversible phase transition to the Raman-inactive phase above 10 GPa.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080503

I. INTRODUCTION

 $A^{\rm II}B_2^{\rm III}X_4^{\rm VI}$ compounds are distorted tetrahedrally-coordinated compounds characterized by the presence of stoichiometric vacancies in the unit cell. Vacancies are needed to obey the Grimm-Sommerfeld rule and maintain the charge neutrality, as in other tetrahedrally-coordinated structures derived from the diamond structure. $A^{\rm II}B_2^{\rm III}X_4^{\rm VI}$ compounds are also known as ordered-vacancy compounds (OVCs) and they represent a clear intermediate stage between perfect crystals and amorphous materials. In particular, CdGa₂S₄ crystallizes in the defect chalcopyrite (DC) structure [space group (s.g.) $I\bar{4}$, No. 82, Z=2]. Its unit cell can be visualized by doubling the zinc blende (ZB) one (s.g. $F\bar{4}3m$, No. 216, Z=4) of an AX compound along the c-axis and replacing four equal cations of the ZB structure by one Cd cation, two Ga cations, and one vacancy [Fig. 1(a)].

The presence of vacancies in OVCs yields relevant properties in comparison with their homologue AX, BX, and ABX_2 compounds, like higher compressibilities, $^{2-4}$ good performance as host materials and suitable valence electron concentration, large second harmonic generation, and extensive damage threshold for mid-IR nonlinear optics. The most remarkable fields of application of OVCs, due to their wide bandgap, high photosensitivity, bright photoluminescence, and long-term stability of many parameters are photovoltaic cells, optoelectronic devices, temperature sensors, and optical filters. In particular, CdGa₂S₄ has raised considerable attention in the field of nonlinear optics.

Several high-pressure (HP) studies of the properties of OVCs have been reported in the last few years. A combination of multiple experimental techniques such as X-ray diffraction (XRD), Raman

a)Author to whom correspondence should be addressed: osgohi@fis.upv.es