The order of projective Edwards curve over $\mathbb{F}_{p^{n}}$ and embedding degree of this curve in finite field

Ruslan Skuratovskii
Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine
e-mail: ruslan@imath.kiev.ua

Summary. We consider algebraic affine and projective curves of Edwards [9, 12] over a finite field $\mathrm{F}_{p^{n}}$. Most cryptosystems of the modern cryptography [2] can be naturally transform into elliptic curves [11]. We research Edwards algebraic curves over a finite field, which at the present time is one of the most promising supports of sets of points that are used for fast group operations. We find not only a specific set of coefficients with corresponding field characteristics, for which these curves are supersingular but also a general formula by which one can determine whether a curve $E_{d}\left[\mathbb{F}_{p}\right]$ is supersingular over this field or not.
The embedding degree of the supersingular curve of Edwards over $\mathbb{F}_{p^{n}}$ in a finite field is investigated, the field characteristic, where this degree is minimal, was found.
The criterion of supersungularity of the Edwards curves is found over $\mathbb{F}_{p^{n}}$. Also the generator of crypto stable sequence on an elliptic curve with a deterministic lower estimate of its period is proposed.
Key words: finite field, elliptic curve, Edwards curve, group of points of an elliptic curve.
Results. We calculate the genus of curve according to Fulton citeF $\rho^{*}(C)=\rho_{\alpha}(C)-\sum_{p \in E} \delta_{p}=$ $\frac{(n-1)(n-2)}{2}-\sum_{p \in E} \delta_{p}=3-2=1$ because $n=4$, where $\rho_{\alpha}(C)$ - the arithmetic type of the curve C, parameter $n=\operatorname{deg} C=4$.
In order to detect supersingular curves, according to Koblitsa's study [10, 11], one can use the search for such parameters for which the curve and its corresponding twisded curve have the same number of solutions.

Theorem 1. If $p \equiv 3(\bmod 4)$ and p is a prime number and $\sum_{j=0}^{\frac{p-1}{2}}\left(C_{\frac{p-1}{2}}^{j}\right)^{2} d^{j} \equiv 0(\bmod p)$ then the order of the curve $x^{2}+y^{2}=1+d x^{2} y^{2}$ coincides with order of the curve $x^{2}+y^{2}=1+d^{-1} x^{2} y^{2}$ over F_{p} and equal to $N_{E_{d}}=p+1$ if $p \equiv 3(\bmod 8)$, and it equals to $N_{E}=p-3$ if $p \equiv 7(\bmod 8)$. Over the extended field $F_{p^{n}}$, where $n \equiv 1(\bmod 2)$ order of this curve is $N_{E}=p^{n}+1$, if $p \equiv 3(\bmod 8)$, and it is $N_{E}=p^{n}-3$, if $p \equiv 7(\bmod 8)$.

Example 3. A number of points for $d=2$ and $p=31 N_{E_{2}}=N_{E_{2}^{-1}}=p-3=28$.
Corollary 1. If coefficient d of E_{d} is such that $\sum_{j=0}^{\frac{p-1}{2}}\left(C_{\frac{p-1}{2}}^{j}\right)^{2} d^{j} \equiv 0(\bmod p)$, then E_{d} has $p-1-2\left(\frac{d}{p}\right)$ points over F_{p} and birational equivalent [1] curve E_{M} has $p+1$ points over F_{p}.

Corollary 2. If the coefficient of the curve satisfies the supersingularity equation $\sum_{j=0}^{\frac{p-1}{2}}\left(C_{\frac{p-1}{2}}^{j}\right)^{2} d^{j} \equiv$ $0(\bmod p)$ studied in Theorem 1, then E_{d} has $p-1-2\left(\frac{d}{p}\right)$ points over F_{p} a boundary-equivalent [8] curve with $p+1$ points over F_{p}.

Theorem 2. The number of points of the affine Edwards curve is equal to

$$
N_{E_{d}}=\left(p+1+(-1)^{\frac{p+1}{2}} \sum_{j=0}^{\frac{p-1}{2}}\left(C_{\frac{p-1}{2}}^{j}\right)^{2} d^{j}\right) \equiv\left((-1)^{\frac{p+1}{2}} \sum_{j=0}^{\frac{p-1}{2}}\left(C_{\frac{p-1}{2}}^{j}\right)^{2} d^{j}+1\right)(\bmod p)
$$

Theorem 3. The number of points of the projective Edwards curve is equal to $N_{E_{d}}=(p+1+2+$ $\left.(-1)^{\frac{p+1}{2}} \sum_{j=0}^{\frac{p-1}{2}}\left(C_{\frac{p-1}{2}}^{j}\right)^{2} d^{j}\right) \equiv\left((-1)^{\frac{p+1}{2}} \sum_{j=0}^{\frac{p-1}{2}}\left(C_{\frac{p-1}{2}}^{j}\right)^{2} d^{j}+3\right)(\bmod p)$.

Let curve contains a subgroup C_{r} of order r.
Definition 1. We call the embedding degree a minimal power k of finite field extention such that can embedded in multiplicative group of $\mathbb{F}_{p^{k}}$.

Let us obtain conditions of embedding [7] the group of supersingular curve $E_{d}\left[\mathbb{F}_{p}\right]$ of order q in multiplicative group of field $\mathbb{F}_{p^{k}}$ with embedding degree $k=12$ [5]. For this goal we use Zigmondy theorem. This theorem implies that suitable characteristic of field \mathbb{F}_{p} is an arbitrary prime q, which do not divide 12 and satisfy the condition $\left.q\right|_{12}(p)$, where ${ }_{12}(x)$ is the cyclotomic polynom. This p will satisfy the necessary conditions namely $\left(x^{n}-1\right) \nLeftarrow p$ for an arbitrary $n=1, \ldots, 11$.

Corollary 3. The embedding degree [7] of the supersingular curve $E_{1, d}$ is equal to 2.
Theorem 4. If Edwards curve over finite field F_{p}, where $p \equiv 7(\bmod 8)$ is supersingular and $p-3=4 q$, where $p, q \in P$, then it has minimal cofactor 4 .

Theorem 5. An arbitrary point of a twisted Edwards curve (1), which is not a point of the 2nd or 4 th order, admits divisibility [4] if and only if $\left(\frac{1-a X^{2}}{p}\right) \neq-1$.

We propose the generator of pseudo random sequence [13].
Take the elliptic curve of a given large simple order q [3], where $p \neq q$. As a one-sided, take the function: $P_{i}=f\left(P_{i-1}\right)=\phi\left(P_{i-1}\right) G$, where $\phi\left(P_{i-1}\right)=x$, if $P_{i-1}=(x, y)$ and p, if $P_{i-1}=O$.

Apply the generation formula $P_{i}=f\left(P_{i-1}\right)=\phi\left(P_{i-1}\right) G$. Therefore, the complexity of the inverse of this function is equivalent to the problems of a discrete logarithm.

A possible modification is the choice of the coordinate of the point ${ }_{i}$ which gcd with $\left|E_{d}\right|$ is lesser. Otherwords, let $t:=\underset{z \in\{x, y\}}{\operatorname{Argmin}}\left(\operatorname{gcd}\left(x,\left|E_{d}\right|\right), \operatorname{gcd}\left(y,\left|E_{d}\right|\right)\right)$ and as a factor we take:

$$
z \in\{x, y\}
$$

$$
\phi\left(P_{i-1}\right)=\left\{\begin{array}{c}
t, \quad P_{i-1}=(x, y) \\
p, \quad P_{i-1}=O
\end{array}\right.
$$

Conclusions. Apply the generation formula $P_{i}=f\left(P_{i-1}\right)=\phi\left(P_{i-1}\right) G$. Therefore, the complexity of the inverse of this function is equivalent to the problems of a discrete logarithm.

Bibliography

[1] Bernstein Daniel J., Birkner Peter, Joye Marc, Lange Tanja, Peters Christiane. Twisted Edwards Curves. IST Programme ECRYPT, and in part by grant ITR-0716498, 2008. 1-17.
[2] Skuratovskii R. V., Modernized Pohlig-Hellman and Shanks algorithm, Vol. 1 Visnuk of KNU. Cybernetics. pp. 56., 2015.
[3] Skuratovskii R. V., Movchan P. V.,Normalizatsiya skruchenoyi kryvoyi Edvardsa ta doslidzhennya yiyi vlastyvostey nad Fp T, Zbirnyk prats 14 Vseukrayinskoyi. FTI NTUU "KPI" 2016, Tom 2, S. 102-104.
[4] Skuratovskii R. V., Kvashuk D. M., Vlastyvosti skruchenoyi kryvoyi Edvardsa, mozhlyvist podilu yiyi tochky na dva i zastosuvannya, Zbirnyk naukovyx prac, Problemy informatyzaciyi ta upravlinnya.. 2017.4(60).S. 61-72.
[5] R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups, Sao Paulo Journal of Mathematical Sciences. (2018), no. 1, pp. 1-19. Source: https://link.springer.com/article/10.1007/s40863-018-0085-0.
[6] R. V. Skuratovskii, U. V. Skruncovich, Twisted Edwards curve and its group of points over finite field F_{p}, Akademgorodok, Novosibirsk, Russia. Conference. Graphs and Groups, Spectra and Symmetries. http://math.nsc.ru/conference/g2/g2s2/exptext/SkruncovichSkuratovskii-abstract-G2S2.pdf
[7] Paulo S. L. M. Barreto Michael Naehrig, Pairing-Friendly Elliptic Curves of Prime Order, International Workshop on Selected Areas in Cryptography SAC 2005: pp. 319-331.
[8] W. Fulton, Algebraic curves. An Introduction to Algebraic Geometry, 2008.
[9] H. Edwards, A normal form for elliptic curves. American Mathematical Society., 2007, Volume 44, Number 3, July, pp. 393-422.
[10] Koblitz N., Eliptic Curve Cryptosystems, Mathematics of Computation, 48(177), 1987, pp.203-209.
[11] A. A. Bolotov, S. B. Gashkov, A. B. Frolov, A. A. Chasovskikh, Elementarnoye vvedeniye v ellipticheskuyu kriptografiyu, KomKnika. Tom 2., 2006. p. 328.
[12] Deepthi P.P., Sathidevi P.S., New stream ciphers based on elliptic curve point multiplication, Computer Communications (2009). pp 25-33.
[13] Shafi Goldwasser, Mihir Bellare., Lecture Notes on Cryptography, Cambridge, Massachusetts, July 2008. p. 289.

Minimal generating set and properties of commutator of Sylow subgroups of alternating and symmetric groups

Ruslan Skuratovskii
Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine
e-mail: ruslan@imath.kiev.ua

Summary. Given a permutational wreath product sequence of cyclic groups [12, 6] of order 2 we research a commutator width of such groups and some properties of its commutator subgroup. Commutator width of Sylow 2-subgroups of alternating group $A_{2^{k}}$, permutation group $S_{2^{k}}$ and C_{p} B were founded. The result of research was extended on subgroups $\left(S y l_{2} A_{2^{k}}\right)^{\prime}, p>2$. The paper presents a construction of commutator subgroup of Sylow 2-subgroups of symmetric and alternating groups. Also minimal generic sets of Sylow 2-subgroups of $A_{2^{k}}$ were founded. Elements presentation of $\left(S y l_{2} A_{2^{k}}\right)^{\prime},\left(S y l_{2} S_{2^{k}}\right)^{\prime}$ was investigated. We prove that the commutator width [14] of an arbitrary element of a discrete wreath product of cyclic groups $C_{p_{i}}, p_{i} \in \mathbb{N}$ is 1 .
Let G be a group. The commutator width of $G, c w(G)$ is defined to be the least integer n, such

