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The order of projective Edwards curve over Fpn and embedding degree
of this curve in finite field

Ruslan Skuratovskii

Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine

e-mail: ruslan@imath.kiev.ua

Summary. We consider algebraic affine and projective curves of Edwards [9, 12] over a finite
field Fpn . Most cryptosystems of the modern cryptography [2] can be naturally transform into
elliptic curves [11]. We research Edwards algebraic curves over a finite field, which at the present
time is one of the most promising supports of sets of points that are used for fast group operations.
We find not only a specific set of coefficients with corresponding field characteristics, for which
these curves are supersingular but also a general formula by which one can determine whether a
curve Ed[Fp] is supersingular over this field or not.
The embedding degree of the supersingular curve of Edwards over Fpn in a finite field is investigated,
the field characteristic, where this degree is minimal, was found.
The criterion of supersungularity of the Edwards curves is found over Fpn . Also the generator
of crypto stable sequence on an elliptic curve with a deterministic lower estimate of its period is
proposed.
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Results. We calculate the genus of curve according to Fulton citeF ρ∗(C) = ρα(C) −

∑
p∈E

δp =

(n−1)(n−2)
2 −

∑
p∈E

δp = 3− 2 = 1 because n = 4, where ρα(C) - the arithmetic type of the curve C,

parameter n = degC = 4.
In order to detect supersingular curves, according to Koblitsa’s study [10, 11], one can use the
search for such parameters for which the curve and its corresponding twisded curve have the same
number of solutions.

Theorem 1. If p ≡ 3 (mod 4) and p is a prime number and

p−1
2∑
j=0

(Cjp−1
2

)
2
dj ≡ 0( mod p) then the

order of the curve x2 +y2 = 1+dx2y2 coincides with order of the curve x2 +y2 = 1+d−1x2y2 over
Fp and equal to NEd = p+1 if p ≡ 3( mod 8), and it equals to NE = p−3 if p ≡ 7( mod 8). Over
the extended field Fpn , where n ≡ 1(mod2) order of this curve is NE = pn + 1, if p ≡ 3( mod 8),
and it is NE = pn − 3, if p ≡ 7( mod 8).

Example 3. A number of points for d = 2 and p = 31 NE2
= NE−1

2
= p− 3 = 28.

Corollary 1. If coefficient d of Ed is such that

p−1
2∑
j=0

(Cjp−1
2

)
2
dj ≡ 0( mod p), then Ed has p−1−2(dp )

points over Fp and birational equivalent [1] curve EM has p+ 1 points over Fp.

Corollary 2. If the coefficient of the curve satisfies the supersingularity equation

p−1
2∑
j=0

(Cjp−1
2

)
2
dj ≡

0( mod p) studied in Theorem 1, then Ed has p−1−2(dp ) points over Fp a boundary-equivalent [8]
curve with p+ 1 points over Fp.
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Theorem 2. The number of points of the affine Edwards curve is equal to

NEd = (p+ 1 + (−1)
p+1
2

p−1
2∑
j=0

(Cjp−1
2

)
2
dj) ≡ ((−1)

p+1
2

p−1
2∑
j=0

(Cjp−1
2

)
2
dj + 1)(modp).

Theorem 3. The number of points of the projective Edwards curve is equal to NEd = (p+ 1 + 2 +

(−1)
p+1
2

p−1
2∑
j=0

(Cjp−1
2

)
2
dj) ≡ ((−1)

p+1
2

p−1
2∑
j=0

(Cjp−1
2

)
2
dj + 3)(modp).

Let curve contains a subgroup Cr of order r.

Definition 1. We call the embedding degree a minimal power k of finite field extention such that
can embedded in multiplicative group of Fpk .

Let us obtain conditions of embedding [7] the group of supersingular curve Ed[Fp] of order q in
multiplicative group of field Fpk with embedding degree k = 12 [5]. For this goal we use Zigmondy
theorem. This theorem implies that suitable characteristic of field Fp is an arbitrary prime q, which
do not divide 12 and satisfy the condition q |12(p) , where 12(x) is the cyclotomic polynom. This p

will satisfy the necessary conditions namely (xn − 1) 6
...p for an arbitrary n = 1, ..., 11.

Corollary 3. The embedding degree [7] of the supersingular curve E1,d is equal to 2.

Theorem 4. If Edwards curve over finite field Fp, where p ≡ 7(mod8) is supersingular and
p− 3 = 4q, where p, q ∈ P, then it has minimal cofactor 4.

Theorem 5. An arbitrary point of a twisted Edwards curve (1), which is not a point of the 2nd

or 4th order, admits divisibility [4] if and only if
(

1−aX2

p

)
6= −1.

We propose the generator of pseudo random sequence [13].
Take the elliptic curve of a given large simple order q [3], where p 6= q. As a one-sided, take

the function: Pi = f(Pi−1) = φ(Pi−1)G, where φ(Pi−1) = x, if Pi−1 = (x, y)
and p, if Pi−1 = O.

Apply the generation formula Pi = f(Pi−1) = φ(Pi−1)G. Therefore, the complexity of the
inverse of this function is equivalent to the problems of a discrete logarithm.

A possible modification is the choice of the coordinate of the point i which gcd with |Ed| is
lesser. Otherwords, let t := Argmin

z∈{x,y}
(gcd(x, |Ed|), gcd(y, |Ed|)) and as a factor we take:

φ(Pi−1) =

{
t, Pi−1 = (x, y)
p, Pi−1 = O.

Conclusions. Apply the generation formula Pi = f(Pi−1) = φ(Pi−1)G. Therefore, the complexity
of the inverse of this function is equivalent to the problems of a discrete logarithm.
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Minimal generating set and properties of commutator of Sylow
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Summary. Given a permutational wreath product sequence of cyclic groups [12, 6] of order 2
we research a commutator width of such groups and some properties of its commutator subgroup.
Commutator width of Sylow 2-subgroups of alternating group A2k , permutation group S2k and
Cp o B were founded. The result of research was extended on subgroups (Syl2A2k)′, p > 2. The
paper presents a construction of commutator subgroup of Sylow 2-subgroups of symmetric and
alternating groups. Also minimal generic sets of Sylow 2-subgroups of A2k were founded. Elements
presentation of (Syl2A2k)′, (Syl2S2k)′ was investigated. We prove that the commutator width [14]
of an arbitrary element of a discrete wreath product of cyclic groups Cpi , pi ∈ N is 1.
Let G be a group. The commutator width of G, cw(G) is defined to be the least integer n, such


