On a Certain Property of the Elements of a Finitely Generated Lattice

Ion Negru
Technical University of Moldova, Chişinău, Republic of Moldova
e-mail: ion.negru1941@gmail.com

Firstly, a reminder that a lattice is a set \boldsymbol{S} of elements; it is partially ordered, closed in relation to two lattice operations: the reunion $\boldsymbol{a}+\boldsymbol{b}$ and the intersection $\boldsymbol{a} \cdot \boldsymbol{b}$ of any two elements \boldsymbol{a} and \boldsymbol{b} from set \boldsymbol{S}. (The reunion $\boldsymbol{a}+\boldsymbol{b}$ is the smallest element of the lattice containing both elements \boldsymbol{a} and \boldsymbol{b}; the intersection $\boldsymbol{a} \cdot \boldsymbol{b}$ is the greatest element of the lattice contained in both elements \boldsymbol{a} and \boldsymbol{b}. Obviously, $\boldsymbol{a} \leq \boldsymbol{a}+\boldsymbol{b}, \boldsymbol{b} \leq \boldsymbol{a}+\boldsymbol{b}, \boldsymbol{a} \geq \boldsymbol{a} \cdot \boldsymbol{b}, \boldsymbol{b} \geq \boldsymbol{a} \cdot \boldsymbol{b}$)
A lattice may also be defined thusly: the generating elements of the lattice are given. Other elements, different from the generators, are obtained via the two lattice operations, applied to the generators.

Statement. Let $\boldsymbol{a 1}, \boldsymbol{a 2}, \boldsymbol{a 3}, \cdots$, an be the lattice generators. And let \boldsymbol{T} be any element (term) of the lattice. The following takes place:

$$
T \geq a_{1}+a_{2}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n}
$$

or:

$$
T \geq a_{i},(i=1,2,3, \cdots, n)
$$

The statement is proven through the method of mathematical induction in relation to the length of element (term) \boldsymbol{T}. (Elements of length 1 are, evidently, the lattice generators. Any other element \boldsymbol{T} of a length greater than 1 is presented as $\boldsymbol{T}=\boldsymbol{T}_{\mathbf{1}}+\boldsymbol{T}_{\mathbf{2}}$ or $\boldsymbol{T}=\boldsymbol{T}_{\mathbf{1}} \cdot \boldsymbol{T}_{\mathbf{2}}$, where the lengths of $\boldsymbol{T}_{\mathbf{1}}$ and $\boldsymbol{T}_{\mathbf{2}}$ are less than the length of element \boldsymbol{T} - this presentation is deployed within the application of the method of mathematical induction.)

