Some Properties of a Lattice Generated by Implicational Logics

Ion Negru
Technical University of Moldova, Chişinău, Republic of Moldova
e-mail: ion.negru1941@gmail.com

Consider the following implicational formulae:

$$
\begin{gathered}
\boldsymbol{A}_{1}=(\boldsymbol{p} \supset \boldsymbol{p}), \boldsymbol{A}_{2}=(((\boldsymbol{p} \supset \boldsymbol{p}) \supset \boldsymbol{p}) \supset \boldsymbol{p})=\left(\left(\boldsymbol{A}_{1} \supset \boldsymbol{p}\right) \supset \boldsymbol{p}\right), \cdots, \\
\boldsymbol{A}_{i+1}=\left(\left(\boldsymbol{A}_{i} \supset \boldsymbol{p}\right) \supset \boldsymbol{p}\right), \cdots,(i=1,2,3, \cdots)
\end{gathered}
$$

Using these formulae (axioms), we may construct the following logics:

$$
\begin{aligned}
& \boldsymbol{L}_{1}=<\boldsymbol{A}_{2 i}>, \boldsymbol{L}_{2}=<\left(\boldsymbol{A}_{2 i} \supset \boldsymbol{A}_{2 i+1}\right)> \\
\boldsymbol{L}_{3}=< & \boldsymbol{A}_{2 i-1}>, \boldsymbol{L}_{4}=<\left(\boldsymbol{A}_{2 i-1} \supset \boldsymbol{A}_{2 i}\right)>, i=1,2,3, \cdots
\end{aligned}
$$

viz. the logic \boldsymbol{L}_{1} is generated by the axioms $\boldsymbol{A}_{2 i}, i=1,2,3, \ldots$ the process is analogous for logics $\boldsymbol{L}_{2}, \boldsymbol{L}_{3}, \boldsymbol{L}_{4}$.
The rule of deduction for these logics is unique - modus ponens: $\boldsymbol{A},(\boldsymbol{A} \supset \boldsymbol{B}) \vdash \boldsymbol{B}$ (if the formulae \boldsymbol{A} and $(\boldsymbol{A} \supset \boldsymbol{B}) \in$ to the given logic, then formula \boldsymbol{B} also \in to this logic).
Let \boldsymbol{S} be the lattice generated by the $\operatorname{logics} \boldsymbol{L}_{1}, \boldsymbol{L}_{2}, . \boldsymbol{L}_{3}, \boldsymbol{L}_{4}$. The following results are obtained:

1. Lattice \boldsymbol{S} is infinite.
2. If logics $\boldsymbol{L}_{1}, \boldsymbol{L}_{2}, . \boldsymbol{L}_{3}, \boldsymbol{L}_{4}$ possess a finite number of axioms (viz. i $\left.=1,2,3, \ldots, \mathrm{n}\right)$, then the respective lattice \boldsymbol{S} is finite.
3. For lattice \boldsymbol{S} the problem of the equality of any two lattice elements is solvable.
4. If the rule of deduction - the substitution is added to the above logics, then statements 1)-3) are also true. (The rule of deduction the substitution means: if formula $\boldsymbol{A} \in$ to the given logic, then the result of the substitution in formula \boldsymbol{A} of any implicational formula of the variable \boldsymbol{p} for the same variable \boldsymbol{p} also \in to the same logic.)
