Algebra, Logic & Geometry

Some properties of a permutation representation of a group by cosets to its included subgroups

Kuznetsov Eugene

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova e-mail: kuznet1964@mail.ru

All necessary definitions and notations it can be found in [1,2].

Theorem 1. Let G be a group and $H \subseteq K \subseteq G$ be its two included subgroups. Let set $T = \{t_{i,j}\}_{i \in E_1, j \in E_2}$ be a loop transversal in G to H and set $T_1 = \{t_{0,j}\}_{j \in E_2}$ be a corresponding loop transversal in K to H. So there exist the loop transversal operation $L = \langle E, \cdot \rangle$, corresponding to the transversal T, and its subloop - loop transversal operation $L_1 = \langle E_2, \cdot \rangle$, corresponding to the transversal T_1 . Also there exist following three permutation representations:

CAIM 2018, Chişinău, September 20-23, 2018

- 1. a permutation representation \hat{G} of the group G by the left cosets to its subgroup H;
- 2. a permutation representation \check{G} of the group G by the left cosets to its subgroup K;
- 3. a permutation representation \breve{L} of the loop L by the left cosets to its subloop L_1 .

Then the following afirmations are true:

- a The kernel $Core_G(H)$ of the permutation representation \hat{G} is a multiplication group of the loop $Core_L(L_1)$ the kernel of the permutation representation \check{L} ;
- b For every $g \in G$:

$$\hat{g}(\langle x, y \rangle) = \langle u, v \rangle \Leftrightarrow \check{g}(x) = u, \ \check{g}(y) = v.$$

Bibliography

- Kuznetsov E., Transversals in loops.1. Elementary properties, Quasigroups and related systems, No. 1 18(2010), 43–58.
- [2] Kuznetsov E., Transversals in groups.1. Elementary properties, Quasigroups and related systems, No. 1, 1(1994), 22–42.