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Formal groups are easily defined algebraic objects that have a wide range of applications in
many field of mathematics from cobordism theory to number theory with the present talk being
devoted to the latter. They are defined as formal power series F in two variables such that
F (x, 0) = x; F (F (x, y), z) = F (x, F (y, z)) and F (x, y) = F (y, x). A relation between formal
groups and reciprocity laws is investigated following the approach by Honda. Let ξ denote an
m-th primitive root of unity. For a character χ of order m, we define two one-dimensional formal
groups over Z[ξ] and prove the existence of an integral homomorphism between them with linear
coefficient equal to the Gauss sum of χ. This allows us to deduce a reciprocity formula for the
m-th residue symbol which, in particular, implies the cubic reciprocity law.
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All necessary definitions and notations it can be found in [1,2].

Theorem 1. Let G be a group and H ⊆ K ⊆ G be its two included subgroups. Let set T =
{ti,j}i∈E1,j∈E2

be a loop transversal in G to H and set T1 = {t0,j}j∈E2
be a corresponding loop

transversal in K to H. So there exist the loop transversal operation L = 〈E, ·〉, corresponding to
the transversal T , and its subloop - loop transversal operation L1 = 〈E2, ·〉, corresponding to the
transversal T1. Also there exist folllowing three permutation representations:


