Algebra, Logic& Geometry

Extreme Points in the Complex of Multy-ary Relations

Sergiu Cataranciuc, Galina Braguța

State University of Moldova, Chişinău, Republic of Moldova e-mail: s.cataranciuc@gmail.com, gallinna@yahoo.com

Let $\mathcal{R}^{n+1} = (R^1, R^2, ..., R^{n+1})$ be a complex of multy-are relations, defined in the work [1]. We denote by d_k^m the distance function defined on the set R^k [2]. Let $d_k^m - conv(A)$ be the convex hull of a subset A from the metric space (R^k, d_k^m) .

Definition 1. The cortege $r = (x_{i_1}, x_{i_2}, ..., x_{i_k}) \in \mathbb{R}^k$ is called *m*-extreme point of the set $A \subset \mathbb{R}^k$, $1 \leq k < m \leq n+1$ if:

86

CAIM 2018, Chişinău, September 20-23, 2018

a) $r \in A$;

b) $r \notin d_k^m - conv(A - r)$.

Knowing *m*-extreme points of a set often simplifies the procedure of convex hull construction and the study of its properties. Let denote by $ext^m(A)$ the set of all *m*-extreme points of the set *A*.

Lemma 1. If A is a subset from m-ary relation R^k and $r \in ext^m(A)$ then $r \in ext^m(d_k^m - conv(A))$. From Lemma 1 results that $ext^m(A) \subset ext^m(d_k^m - conv(A))$. Let be $r \in A \subset R^k$. We denote by $\Gamma_A^m(r) = \{z \in A : z \cup r \in R^m\}$ the set of all elements from

Let be $r \in A \subset \mathbb{R}^k$. We denote by $\Gamma_A^m(r) = \{z \in A : z \cup r \in \mathbb{R}^m\}$ the set of all elements from A that are joined with r through a m-dimensional chain of length one. Such a set may be named m-dimensional neighborhood of the element r in A.

A complex of multi-ary relations $\mathcal{R}^{n+1} = (R^1, R^2, ..., R^{n+1})$, defined on a set of elements X is complete, if $R^1 = X$ and $R^s = X^s$, $2 \le s \le n+1$. The complex \mathcal{R}^{n+1} is named *m*-complete, if $R^m = X^m$, $2 \le m \le n+1$.

Lemma 2. If the complex $\mathcal{R}^{n+1} = (R^1, R^2, ..., R^{n+1})$ is *m*-complete, then it is and *t*-complete, for any $2 \le t \le m$.

Definition 2. The cortege $r \in A \subset R^k$ is named *m*-simplicial cortege in A, if the set $\Gamma_A^m(r)$ generates a *m*-complete subcomplex.

Theorem 1. If the cortege $r \in A \subset R^k$ is *m*-simplicial in *A*, then it is *m*-simplicial and in the set $d_k^m - conv(A)$.

It follows conditions in which an arbitrary cortege r from the set $A \subset \mathbb{R}^k$ is *m*-extreme point in A. **Theorem 2.** The cortege $r \in A \subset \mathbb{R}^k$ is *m*-extreme point in A, if and only if r is *m*-simplicial cortege in A.

Theorem 3. If $d_k^m - conv(A)$ is the convex hull of a set $A \subset \mathbb{R}^k$, then any *m*-extreme point from $d_k^m - conv(A)$ is *m*-extreme point in *A*.

Bibliography

- [1] Cataranciuc S., Topologia algebrică a relațiilor multi-are. Chișinău: CEP USM, 2015, 228 p.
- [2] S. Cataranciuc, G. Braguţa, The convexity in the complex of multi-ary relations, ROMAI Journal, v. 11, 2 (2015), 51-62.