Extreme Points in the Complex of Multy-ary Relations
 Sergiu Cataranciuc, Galina Braguța
 State University of Moldova, Chişinău, Republic of Moldova e-mail: s.cataranciuc@gmail.com, gallinna@yahoo.com

Let $\mathcal{R}^{n+1}=\left(R^{1}, R^{2}, \ldots, R^{n+1}\right)$ be a complex of multy-are relations, defined in the work [1]. We denote by d_{k}^{m} the distance function defined on the set $R^{k}[2]$. Let $d_{k}^{m}-\operatorname{conv}(A)$ be the convex hull of a subset A from the metric space $\left(R^{k}, d_{k}^{m}\right)$.
Definition 1. The cortege $r=\left(x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{k}}\right) \in R^{k}$ is called m-extreme point of the set $A \subset R^{k}$, $1 \leq k<m \leq n+1$ if:
a) $r \in A$;
b) $r \notin d_{k}^{m}-\operatorname{conv}(A-r)$.

Knowing m-extreme points of a set often simplifies the procedure of convex hull construction and the study of its properties. Let denote by $\operatorname{ext}^{m}(A)$ the set of all m-extreme points of the set A.
Lemma 1. If A is a subset from m-ary relation R^{k} and $r \in \operatorname{ext}^{m}(A)$ then $r \in \operatorname{ext}^{m}\left(d_{k}^{m}-\operatorname{conv}(A)\right)$. From Lemma 1 results that $\operatorname{ext}^{m}(A) \subset \operatorname{ext}^{m}\left(d_{k}^{m}-\operatorname{conv}(A)\right)$.
Let be $r \in A \subset R^{k}$. We denote by $\Gamma_{A}^{m}(r)=\left\{z \in A: z \cup r \in R^{m}\right\}$ the set of all elements from A that are joined with r through a m-dimensional chain of length one. Such a set may be named m-dimensional neighborhood of the element r in A.
A complex of multi-ary relations $\mathcal{R}^{n+1}=\left(R^{1}, R^{2}, \ldots, R^{n+1}\right)$, defined on a set of elements X is complete, if $R^{1}=X$ and $R^{s}=X^{s}, 2 \leq s \leq n+1$. The complex \mathcal{R}^{n+1} is named m-complete, if $R^{m}=X^{m}, 2 \leq m \leq n+1$ 。
Lemma 2. If the complex $\mathcal{R}^{n+1}=\left(R^{1}, R^{2}, \ldots, R^{n+1}\right)$ is m-complete, then it is and t-complete, for any $2 \leq t \leq m$.
Definition 2. The cortege $r \in A \subset R^{k}$ is named m-simplicial cortege in A, if the set $\Gamma_{A}^{m}(r)$ generates a m-complete subcomplex.
Theorem 1. If the cortege $r \in A \subset R^{k}$ is m-simplicial in A, then it is m-simplicial and in the set $d_{k}^{m}-\operatorname{conv}(A)$.
It follows conditions in which an arbitrary cortege r from the set $A \subset R^{k}$ is m-extreme point in A. Theorem 2. The cortege $r \in A \subset R^{k}$ is m-extreme point in A, if and only if r is m-simplicial cortege in A.
Theorem 3. If $d_{k}^{m}-\operatorname{conv}(A)$ is the convex hull of a set $A \subset R^{k}$, then any m-extreme point from $d_{k}^{m}-\operatorname{conv}(A)$ is m-extreme point in A.

Bibliography

[1] Cataranciuc S., Topologia algebrică a relaţiilor multi-are. Chişinău: CEP USM, 2015, 228 p.
[2] S. Cataranciuc, G. Braguţa, The convexity in the complex of multi-ary relations, ROMAI Journal, v. 11, 2 (2015), 51-62.

