Bibliography

- [1] E. Boros, V.Gurvich. *Perfect graphs, kernels, and cores of cooperative games*, Discrete Mathematics, Volume 306, Issues 19-20, 6 October 2006, p. 2336-2354.
- [2] T. Fleiner. Stable and crossing structures, Ph.D. Thesis, Alferd Renyi Mathematical Institute of the Hungarian Academy of Science, 2000.
- [3] N. Grigoriu. B-stable subgraphs in undirected graphs, The third conference of Mathematical Society of the Republic of Moldova, Chişinău, 2014, p. 354-357.

Methods of solving perfect informational games

Hâncu Boris

State University of Moldova, Chişinău, Republic of Moldova e-mail: boris.hancu@gmail.com

We consider a two persons game in complete and "1 \leftrightarrows 2"-perfect information with the normal form $\Gamma = \langle X, Y, H_1, H_2 \rangle$. The "1 \leftrightarrows 2"-perfect information permits us to use other types of strategies, which represents "programs of action". We call these strategies "informationally extended strategies" and denote the sets of these strategies by $\Theta_1 = \{\theta_1 : Y \to X \ \forall y \in Y, \theta_1(y) \in X\}, \Theta_2 = \{\theta_2 : X \to Y \ \forall x \in X, \theta_2(x) \in Y\}$. We shall remark the following ways to solve games in informationally extended strategies.

1. For any strategies profile (θ_1, θ_2) it is constructed the normal forms of game on set of informationally nonextended strategies X, Y. Thus the set of games $\{\Gamma(\theta_1, \theta_2)\}_{\theta_1 \in \Theta_1}^{\theta_2 \in \Theta_2}$ is generated. In this case only the form of utility functions is chainged $\widetilde{H}_1(x, y) \equiv H_i(\theta_1(y)), \theta_2(x))$ and $(x^*, y^*) \in \widetilde{H}_1(x, y)$.

$$NE(\Gamma(\theta_1, \theta_2)) \rightleftharpoons \begin{cases} \max_{x \in X} H_1(x, y^*), \\ \max_{y \in Y} \widetilde{H}_2(x^*, y). \end{cases}$$

2. The case when $H_i: \Theta_1 \times \Theta_2 \to R$ are not functions, but functionals and we operate not with elements $x \in X$ and $y \in Y$, but with the functions $\theta_1 \in \Theta_1$ and $\theta_2 \in \Theta_2$. Equilibrium profiles are defined on the set $\Theta_1 \times \Theta_2$.

4. The case when it is "extended" the number of players introducing " $1 \rightleftharpoons 2$ " informational type players. It is considered the game with the following normal form $\tilde{\Gamma} = \langle I, J, \Theta_1, \Theta_2, \tilde{H}_i, \tilde{H}_j \rangle$, where I is the set of θ_1^i -informational type players "generated" by the strategy $\theta_1^i \in \Theta_1$, J is the set of θ_2^i -informational type players "generated" by the strategy $\theta_2^i \in \Theta_2$, $\tilde{H}_i \left(\theta_1^i, \theta_2^j \right)$, $i \in I$, respectively $\tilde{H}_j \left(\theta_1^i, \theta_2^j \right)$, $j \in J$, is the utility function of the θ_1^i -informational type players, respectively of the θ_2^j -informational type players. Here it is possible to use Harsanyi principle in solving such types of games.