Bibliography

[1] E. Boros, V.Gurvich. Perfect graphs, kernels, and cores of cooperative games, Discrete Mathematics, Volume 306, Issues 19-20, 6 October 2006, p. 2336-2354.
[2] T. Fleiner. Stable and crossing structures, Ph.D. Thesis, Alferd Renyi Mathematical Institute of the Hungarian Academy of Science, 2000.
[3] N. Grigoriu. B-stable subgraphs in undirected graphs, The third conference of Mathematical Society of the Republic of Moldova, Chişinău, 2014, p. 354-357.

Methods of solving perfect informational games
Hâncu Boris
State University of Moldova, Chişinău, Republic of Moldova
e-mail: boris.hancu@gmail.com

We consider a two persons game in complete and " $1 \leftrightarrows 2$ "-perfect information with the normal form $\Gamma=\left\langle X, Y, H_{1}, H_{2}\right\rangle$. The " $1 \leftrightarrows 2$ "-perfect information permits us to use other types of strategies, which represents "programs of action". We call these strategies "informationally extended strategies" and denote the sets of these strategies by $\Theta_{1}=\left\{\theta_{1}: Y \rightarrow X \forall y \in Y, \theta_{1}(y) \in X\right\}$, $\Theta_{2}=\left\{\theta_{2}: X \rightarrow Y \quad \forall x \in X, \theta_{2}(x) \in Y\right\}$. We shall remark the following ways to solve games in informationally extended strategies.

1. For any strategies profile $\left(\theta_{1}, \theta_{2}\right)$ it is constructed the normal forms of game on set of informationally nonextended strategies X, Y. Thus the set of games $\left\{\Gamma\left(\theta_{1}, \theta_{2}\right)\right\}_{\theta_{1} \in \Theta_{1}}^{\theta_{2} \in \Theta_{2}}$ is generated. In this case only the form of utility functions is chainged $\left.\widetilde{H}_{1}(x, y) \equiv H_{i}\left(\theta_{1}(y)\right), \theta_{2}(x)\right)$ and $\left(x^{*}, y^{*}\right) \in$ $N E\left(\Gamma\left(\theta_{1}, \theta_{2}\right)\right) \rightleftarrows\left\{\begin{array}{l}\max _{x \in X} \widetilde{H}_{1}\left(x, y^{*}\right), \\ \max _{y \in Y} \widetilde{H}_{2}\left(x^{*}, y\right) .\end{array}\right.$
2. The case when $\widehat{H}_{i}: \Theta_{1} \times \Theta_{2} \rightarrow R$ are not functions, but functionals and we operate not with elements $x \in X$ and $y \in Y$, but with the functions $\theta_{1} \in \Theta_{1}$ and $\theta_{2} \in \Theta_{2}$. Equilibrium profiles are defined on the set $\Theta_{1} \times \Theta_{2}$.
3. The case when the utility of players is described by the functions H_{1} and H_{2} respectively, but solutions are defined on the set $\Theta_{1} \times \Theta_{2}$. Let $\left(x^{*}, y^{*}\right) \in N E(\Gamma)$, then as a solution one can take the strategy profile $\left(\theta_{1}^{*}, \theta_{2}^{*}\right) \in \Theta_{1} \times \Theta_{2}$ for which is verified $\left\{\begin{array}{l}\theta_{1}^{*}(y)=x^{*} \forall y \in Y, \\ \theta_{2}^{*}(x)=y^{*} \forall x \in X\end{array}\right.$
4. The case when it is "extended" the number of players introducing " $1 \leftrightarrows 2$ "informational type players. It is considered the game with the following normal form $\widetilde{\Gamma}=\left\langle I, J, \Theta_{1}, \Theta_{2}, \widetilde{H}_{i}, \widetilde{H}_{j}\right\rangle$, where I is the set of θ_{1}^{i}-informational type players "generated" by the strategy $\theta_{1}^{i} \in \Theta_{1}, J$ is the set of θ_{2}^{i}-informational type players "generated" by the strategy $\theta_{2}^{i} \in \Theta_{2}, \widetilde{H}_{i}\left(\theta_{1}^{i}, \theta_{2}^{j}\right), i \in I$, respectively $\widetilde{H}_{j}\left(\theta_{1}^{i}, \theta_{2}^{j}\right), j \in J$, is the utility function of the θ_{1}^{i}-informational type players, respectively of the θ_{2}^{j}-informational type players. Here it is possible to use Harsanyi principle in solving such types of games.
