Set-Valued Almost Periodic Functions and Perfect Mappings

Dorin Pavel

Department of Computer Sciences, Tiraspol State University, Chişinău, Republic of Moldova, MD 2069
e-mail: dorinp@mail.md
Fix a natural number $n \geq 1$. Denote by d the Euclidean distance on the n-dimensional Euclidian space \mathbb{R}^{n} and by $\operatorname{Com}\left(\mathbb{R}^{n}\right)$ the space of all non-empty compact subsets of \mathbb{R}^{n} with the PompeiuHausdorff distance $d_{P}(A, B)$. The space $\mathbb{R}=\mathbb{R}^{1}$ is the space of reals and $\mathbb{C}=\mathbb{R}^{2}$ is the space of complex numbers. The space $\left(\operatorname{Com}\left(\mathbb{R}^{n}\right), d_{P}\right)$ is a complete metric space.
Fix a topological space G. By $T(G)$ denote the family of all single-valued continuous mappings of G into G. Relatively to the operation of composition, the set $T(G)$ is a monoid (a semigroup with unity).

A single-valued $\varphi: G \longrightarrow \operatorname{Com}\left(\mathbb{R}^{n}\right)$ is called a set-valued function on G. For any two set-valued functions $\varphi, \psi: G \longrightarrow B(\mathbb{R})$ and $t \in \mathbb{R}$ are determined the distance $\rho(\varphi, \psi)=\sup \left\{d_{P}(\varphi(x), \psi(x))\right.$: $x \in G\}$ and the set-valued functions $\varphi+\psi, \varphi \cdot \psi,-\varphi, \varphi \cup \psi$, where $(\varphi \cup \psi)(x)=(\varphi(x) \cup \psi(x)$, and $t \varphi$. We put $(\varphi \circ f)(x)=\varphi(f(x))$ for all $f \in T(G), \varphi \in S F(G)$ and $x \in G$. Let $S F\left(G, \mathbb{R}^{n}\right)$ be the space of all set-valued functions on G with the metric ρ. The space $\operatorname{SF}\left(G, \mathbb{R}^{n}\right)$ is a complete metric space.

A set-valued function $\psi: G \longrightarrow \mathbb{R}^{n}$ is called lower (upper) semicontinuous if the set $\psi^{-1}(H)$ $=\{x \in G: \psi(x) \cap H \neq \emptyset\}$ is an open (a closed) subset of G for any open (closed) subset H of the space R^{n}. Denote by $\operatorname{LSC}\left(G, \mathbb{R}^{n}\right)$ the family of all lower semicontinuous functions and by $\operatorname{USC}\left(G, \mathbb{R}^{n}\right)$ the family of all upper semicontinuous functions on the space G.

If $\varphi \in S F(G)$ and $f \in T(G)$, then $\varphi_{f}=\varphi \circ f$ and $\varphi_{f}(x)=\varphi(f(x))$ for any $\left.x \in G\right)$. Evidently, $\varphi_{f} \in S F(G)$.

Fix a submonoid P of the monoid $T(G)$. We say that P is a monoid of continuous translations of G. The set P is called a transitive set of translations of G if for any two points $x, y \in G$ there exists $f \in P$ such that $f(x)=y$. In particular, $1_{G} \in P$, where $1 G$ is the identical translation on the space G.

For any function $\varphi \in S F\left(G, \mathbb{R}^{n}\right)$ we put $P(\varphi)=\left\{\varphi_{f}: f \in P\right\}$.
Definition 1. A function $\varphi \in S F\left(G, \mathbb{R}^{n}\right)$ is called a P-periodic function on a space G if the closure $\bar{P}(\varphi)$ of the set $P(\varphi)$ in the space $S F\left(G, \mathbb{R}^{n}\right)$ is a compact set.

Denote by $P-a p_{s}\left(G, \mathbb{R}^{n}\right)$ the subspace of all P-periodic set-valued functions on the space G.
Let $\mu: A \longrightarrow B$ be a perfect mapping of a space A onto a space $B, P_{A} \subset T(A), P_{B} \subset T(B)$ and $h: P_{A} \longrightarrow P_{B}$ is a single valued mapping such that $\mu(f(x))=h(f)\left(\mu(x)\right.$ for any $x \in A$ and $f \in P_{A}$. Consider the mapping $\Phi_{(\mu, h)}: S F\left(A, \mathbb{R}^{n}\right) \rightarrow S F\left(B, \mathbb{R}^{n}\right)$ and $\Psi_{(\mu, h)}: S F\left(B, \mathbb{R}^{n}\right) \rightarrow S F\left(A, \mathbb{R}^{n}\right)$, where $\Phi_{(\mu, h)}(\varphi)=\mu \circ \varphi$ for each $\varphi \in S F\left(B, \mathbb{R}^{n}\right)$ and $\Psi(\psi)_{f}(y)=\mu\left(\psi_{g}\left(\mu^{-1}(y)\right)\right.$, where $h(g)=f$. We have $\Psi(\psi)_{f}(y)=\cup\left\{\mu\left(\psi_{g}\left(\mu^{-1}(y)\right): h(g)=f\right\}\right.$.
Theorem 1. The mappings $\Phi_{(\mu, h)}$ and $\Psi_{(\mu, h)}$ are continuous.
Theorem 2. $\Phi_{(\mu, h)}\left(P_{B}-a p_{s}\left(B, \mathbb{R}^{n}\right) \subset P_{A}-a p_{s}\left(A, \mathbb{R}^{n}\right)\right.$ and
$\operatorname{Psi}_{(\mu, h)}\left(P_{A}-a p_{s}\left(A, \mathbb{R}^{n}\right) \subset P_{B}-a p_{s}\left(B, \mathbb{R}^{n}\right)\right.$.

