Set-Valued Almost Periodic Functions and Perfect Mappings

Dorin Pavel

Department of Computer Sciences, Tiraspol State University, Chişinău, Republic of Moldova, MD 2069 e-mail: dorinp@mail.md

Fix a natural number $n \geq 1$. Denote by d the Euclidean distance on the *n*-dimensional Euclidian space \mathbb{R}^n and by $Com(\mathbb{R}^n)$ the space of all non-empty compact subsets of \mathbb{R}^n with the Pompeiu-Hausdorff distance $d_P(A, B)$. The space $\mathbb{R} = \mathbb{R}^1$ is the space of reals and $\mathbb{C} = \mathbb{R}^2$ is the space of complex numbers. The space $(Com(\mathbb{R}^n), d_P)$ is a complete metric space.

Fix a topological space G. By T(G) denote the family of all single-valued continuous mappings of G into G. Relatively to the operation of composition, the set T(G) is a monoid (a semigroup with unity).

A single-valued $\varphi: G \longrightarrow Com(\mathbb{R}^n)$ is called a set-valued function on G. For any two set-valued functions $\varphi, \psi: G \longrightarrow B(\mathbb{R})$ and $t \in \mathbb{R}$ are determined the distance $\rho(\varphi, \psi) = \sup\{d_P(\varphi(x), \psi(x)) : x \in G\}$ and the set-valued functions $\varphi + \psi$, $\varphi \cdot \psi$, $-\varphi$, $\varphi \cup \psi$, where $(\varphi \cup \psi)(x) = (\varphi(x) \cup \psi(x))$, and $t\varphi$. We put $(\varphi \circ f)(x) = \varphi(f(x))$ for all $f \in T(G)$, $\varphi \in SF(G)$ and $x \in G$. Let $SF(G, \mathbb{R}^n)$ be the space of all set-valued functions on G with the metric ρ . The space $SF(G, \mathbb{R}^n)$ is a complete metric space.

A set-valued function $\psi : G \longrightarrow \mathbb{R}^n$ is called lower (upper) semicontinuous if the set $\psi^{-1}(H) = \{x \in G : \psi(x) \cap H \neq \emptyset\}$ is an open (a closed) subset of G for any open (closed) subset H of the space \mathbb{R}^n . Denote by $LSC(G, \mathbb{R}^n)$ the family of all lower semicontinuous functions and by $USC(G, \mathbb{R}^n)$ the family of all upper semicontinuous functions on the space G.

If $\varphi \in SF(G)$ and $f \in T(G)$, then $\varphi_f = \varphi \circ f$ and $\varphi_f(x) = \varphi(f(x))$ for any $x \in G$). Evidently, $\varphi_f \in SF(G)$.

Fix a submonoid P of the monoid T(G). We say that P is a monoid of continuous translations of G. The set P is called a transitive set of translations of G if for any two points $x, y \in G$ there exists $f \in P$ such that f(x) = y. In particular, $1_G \in P$, where 1G is the identical translation on the space G.

For any function $\varphi \in SF(G, \mathbb{R}^n)$ we put $P(\varphi) = \{\varphi_f : f \in P\}.$

Definition 1. A function $\varphi \in SF(G, \mathbb{R}^n)$ is called a *P*-periodic function on a space *G* if the closure $\overline{P}(\varphi)$ of the set $P(\varphi)$ in the space $SF(G, \mathbb{R}^n)$ is a compact set.

Denote by P- $ap_s(G, \mathbb{R}^n)$ the subspace of all P-periodic set-valued functions on the space G.

Let $\mu: A \longrightarrow B$ be a perfect mapping of a space A onto a space B, $P_A \subset T(A)$, $P_B \subset T(B)$ and $h: P_A \longrightarrow P_B$ is a single valued mapping such that $\mu(f(x)) = h(f)(\mu(x)$ for any $x \in A$ and $f \in P_A$. Consider the mapping $\Phi_{(\mu,h)}: SF(A, \mathbb{R}^n) \to SF(B, \mathbb{R}^n)$ and $\Psi_{(\mu,h)}: SF(B, \mathbb{R}^n) \to SF(A, \mathbb{R}^n)$, where $\Phi_{(\mu,h)}(\varphi) = \mu \circ \varphi$ for each $\varphi \in SF(B, \mathbb{R}^n)$ and $\Psi(\psi)_f(y) = \mu(\psi_g(\mu^{-1}(y)))$, where h(g) = f. We have $\Psi(\psi)_f(y) = \bigcup \{\mu(\psi_g(\mu^{-1}(y)): h(g) = f\}$. **Theorem 1.** The mappings $\Phi_{(\mu,h)}$ and $\Psi_{(\mu,h)}$ are continuous.

Theorem 2. $\Phi_{(\mu,h)}(P_B \text{-} ap_s(B, \mathbb{R}^n) \subset P_A \text{-} ap_s(A, \mathbb{R}^n)$ and

 $Psi_{(\mu,h)}(P_A - ap_s(A, \mathbb{R}^n) \subset P_B - ap_s(B, \mathbb{R}^n).$