On the generalized factorization of functions in weighted spaces

Petru Moloșnic, Vasile Neagu

State University of Moldova, Chişinău, Republic of Moldova e-mail: vasileneagu45@gmail.com

In this paper the notion of factorization of functions with respect to contour Γ in the spaces $L_p(\Gamma, \rho)$ is presented [1]. The main result of the paper is the determination of some classes of functions that allow a factorization, as well as the application of factorization in studying of singular integral operators with measurable and bounded coefficients.

Let Γ be a closed Lyapunov contour which bounds the domain G^+ . By G^- we denote the domain which complements $G \bigcup \Gamma$ to the whole plane. Assume that $0 \in G^+$ and $\infty \in G^-$.

Let $L_p^+(\Gamma, \rho) = P(GL_p(\Gamma, \rho)), L_p^-(\Gamma, \rho) = Q(GL_p(\Gamma, \rho)) + c, c \in \mathbb{C}$. Definition. The generalized factorization of function $a \in GL_{\infty}(\Gamma)$ with respect to contour Γ in the space $L_p(\Gamma, \rho)$ is its representation in the form

$$a(t) = a_{-}(t)t^{\kappa}a_{+}(t)$$

where $\kappa \in \mathbb{Z}$ and the factors a_{\pm} satisfy the following conditions: 1) $a_{-} \in L_{p}^{-}(\Gamma, \rho), a_{+} \in L_{q}^{+}(\Gamma, \rho^{1-q}), a_{-}^{-1} \in L_{q}^{-}(\Gamma, \rho^{1-q}),$ $a_{+}^{-1} \in L_{p}^{+}(\Gamma, \rho) \ (p^{-1} + q^{-1} = 1);$ 2) the operator $a_{+}^{-1}Pa_{-}^{-1}I$ is bounded in the space $L_{p}(\Gamma, \rho)$.

Denote by $R^+L_{\infty}(\Gamma)$ the set of measurable real functions on the contour Γ verifying the conditions $0 < es \sin f a(t), ess \sup_{t \in \Gamma} a(t) < \infty.$

Theorem 1. $R^+L_{\infty}(\Gamma) \subset Fact_{p,\rho}(\Gamma)$. If $a \in R^+L_{\infty}(\Gamma)$, then

$$a(t) = a_{-}(t) \cdot a_{+}(t),$$

where $a_+(t) = \exp(P \ln a)(t)$, $a_-(t) = \exp(Q \ln a)(t)$. In addition, the functions a_{\pm} verify the conditions: $a_{\pm}^{\pm 1} \in L_{\infty}^+(\Gamma)$ and $a_{-}^{\pm 1} \in L_{\infty}^-(\Gamma)$.

Denote by $Nt_{p,\rho}(\Gamma)$ the set of measurable bounded functions a(t) on the contour Γ for which the operator A = aP + Q is Noetheran in $L_p(\Gamma, \rho)$.

Theorem 2. $Nt_{p,\rho}(\Gamma) = Fact_{p,\rho}(\Gamma).$

Bibliography

 Gohberg, N. Krupnik, Introduction to the theory of one-dimensional singular integral operators, Vols. I.- Birkhäuse Verlag, Basel, 1992.