[3] M. Benchohra, J. Henderson, R. Luka, A. Ouahab, Boundary Value Problems for Systems of Diferential, Diference and Fractional Equation, Kluwer, Dordrecht-Boston-London, Netherlands, 2016, 307 p.

Configurations of invariant lines of total multiplicity 7 of cubic systems with four real distinct infinite singularities

Cristina Bujac, Dana Schlomiuk, Nicolae Vulpe
Institute of Mathematics and Computer Science, Moldova;
Département de Mathématiques et de Statistiques, Université de Montréal, Canada;
Institute of Mathematics and Computer Science, Moldova
e-mail: crisulicica@yahoo.com, dasch@dms.umontreal.ca, nvulpe@gmail.com

Consider the family of planar cubic polynomial differential systems. Following [1] we call configuration of invariant lines of a cubic system the set of (complex) invariant straight lines (which may have real coefficients), including the line at infinity, of the system, each endowed with its own multiplicity and together with all the real singular points of this system located on these invariant straight lines, each one endowed with its own multiplicity.
Our main goal is to classify the family of cubic systems according to their geometric properties encoded in the configurations of invariant straight lines of total multiplicity seven (including the line at infinity with its own multiplicity), which these systems possess.
Here we consider only the subfamily of cubic systems with four real distinct infinite singularities which we denote by $\mathbf{C S L}_{7}^{4 s \infty}$. We prove that there are exactly 94 distinct configurations of invariant straight lines for this class and present corresponding examples for the realization of each one of the detected configurations.
We remark that cubic systems with nine (the maximum number) of invariant lines for cubic systems are considered in [2], whereas cubic systems with eight invariant lines (considered with their multiplicities) are investigated in [3-7].

Bibliography

[1] D. Schlomiuk, N. Vulpe, Global topological classification of Lotka-Volterra quadratic differential systems, Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 64, 1-69.
[2] J. Llibre, N. Vulpe , Planar cubic polynomial differential systems with the maximum number of invariant straight lines, Rocky Mountain J. Math. 38 (2006), 1301-1373.
[3] C. Bujac, N. Vulpe, Cubic differential systems with invariant lines of total multiplicity eight and with four distinct infinite singularities. J. Math. Anal. Appl. 423(2015), 1025-1080.
[4] C. Bujac, N. Vulpe, Cubic systems with invariant straight lines of total multiplicity eight and with three distinct infinite singularities. Qual. Theory Dyn. Syst. 14(2015), No. 1, 109-137.
[5] C. Bujac, N. Vulpe, Classification of cubic differential systems with invariant straight lines of total multiplicity eight and two distinct infinite singularities, Electron. J. Qual. Theory Differ. Equ. 2015, No. 60, 1-38. MR3418574
[6] C. Bujac, One subfamily of cubic systems with invariant lines of total multiplicity eight and with two distinct real infinite singularities, Bul. Acad. Ştiinţe Repub. Mold., Mat. 77(2015), No. 1, 48-86.
[7] C. Bujac, N. Vulpe, Cubic Differential Systems with Invariant Straight Lines of Total Multiplicity Eight possessing One Infinite Singularity, Qual. Theory Dyn. Syst. 16(2017), No. 1, 1-30.

Acknowledgement. The second author is partially supported by FP7-PEOPLE-2012-IRSES316338 and by the grant 12.839.08.05F from SCSTD of ASM.

