1	HgGa ₂ Se ₄ under high pressure: an optical absorption study
2 3 4 5	O. Gomis, ^{1,*} R. Vilaplana, ¹ F.J. Manjón, ² J. Ruiz-Fuertes, ^{3,4} E. Pérez-González, ⁵ J. López-Solano, ⁵ E. Bandiello, ^{6,4} D. Errandonea, ⁴ A. Segura ⁴ , P. Rodríguez-Hernández, ⁵ A. Muñoz, ⁵ V. V. Ursaki, ⁷ and I. M. Tiginyanu ⁷
6 7 8 9 10 11 12 13 14 15 16 17	¹ Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team,
18 19 20	⁷ Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, 2028 Chisinau, Moldova
21	
22	Abstract
23	History and a base of a ba
24	High-pressure optical absorption measurements have been performed in defect
25	chalcopyrite HgGa ₂ Se ₄ to investigate the influence of pressure on the bandgap energy
26	and its relation with the pressure-induced order-disorder processes that occur in this
27	ordered-vacancy compound. Two different experiments have been carried out in which
28	the sample undergoes either a partial or a total pressure-induced disorder process at 15.4
29	and 30.8 GPa, respectively. It has been found that the direct bandgap energies of the
30	recovered samples at 1 GPa were around 0.15 and 0.23 eV smaller than that of the
31	original sample, respectively, and that both recovered samples have different pressure
32	coefficients of the direct bandgap than the original sample. A comprehensive
33	explanation for these results on the basis of pressure-induced order-disorder processes is
34	provided.
35	
36	PACS numbers: 62.50p, 71.20.Nr, 78.40.Fy
37	Keywords: defect chalcopyrite, high pressure, order-disorder transitions, optical
38	properties, bandgap energy
39	

40

1. Introduction

HgGa₂Se₄ is an adamantine-type $A^{II}B_2^{III}X_4^{VI}$ ordered-vacancy compound (OVC) which crystallizes in the tetragonal defect-chalcopyrite (DC) structure whose space group (S.G.) is *I*-4, No. 82. A feature of OVCs is that they are tetrahedrally-coordinated semiconductors that have a vacant cationic site in an ordered and stoichiometric fashion; i.e., a stoichiometric vacancy located at a fixed Wyckoff position in the unit cell [1]. The presence of a stoichiometric vacancy in the unit cell leads to a more complex physics in OVCs than in common semiconductors and explains why OVCs have been less studied than common binary and ternary chalcogenide semiconductors.

OVCs are interesting compounds to study the order-disorder phase transitions occurring in tetrahedrally-coordinated semiconductors and the influence of cation disorder in the physico-chemical properties of semiconductors. A common trend in all adamantine OVCs is that they have several non-equivalent tetrahedrally-coordinated cations and a vacancy in the unit cell which results in a distortion of the crystal lattice from the cubic symmetry. The lack of cubic symmetry of OVCs, their anisotropy, and their wide range of bandgap energies provides special properties to this family of semiconductors with important technological applications in optoelectronics, solar cells, and non-linear optics that have been the subject of several reviews [1-4].

High-pressure studies of OVCs with $A^{II}B_2^{III}X_4^{VI}$ stoichiometry are receiving increasing attention in the last years [5-36]. The vast majority of these works have been focused on the study of the structural and vibrational properties of $A^{II}B_2^{III}X_4^{VI}$ compounds. In particular, three high-pressure works have recently reported the structural and vibrational properties of DC-HgGa₂Se₄ under pressure where pressure-induced phase transitions have been observed [24,25,28]. The disordered stannite (DS) structure and the disordered rocksalt (DR) structure have been proposed as the high-pressure phases of DC-HgGa₂Se₄ [24,25,28]. In addition, the DR phase of HgGa₂Se₄ on downstroke undergoes a phase transition below 2.1 GPa to a phase assigned to a disordered zincblende (DZ) structure [24,28]. However, to the best of our knowledge, only three works have been devoted to the experimental high-pressure study of the optical absorption of the OVC family [6, 21, 23]. In this respect, the pressure dependence of the direct bandgap energy of semimagnetic MnGa₂Se₄ [6], and of DC-CdGa₂Se₄ and DC-HgGa₂Se₄ [21] were reported. This last work was focused on the explanation of the strong non-linear pressure dependence of the direct bandgap energy