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On the inverse operations in the class of preradicals

of a module category, II

Ion Jardan

Abstract. In the present work a new operation, called left coquotient with respect
to meet, in the class of preradicals PR of the category R-Mod of left R-modules is
defined and investigated. It is dual to the studied earlier left quotient with respect to
join [2]. Main properties of this operation and relations with lattice operations in PR

are shown. Connections with some constructions in the large complete lattice PR are
studied and some particular cases are mentioned.
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1 Introduction and preliminary facts

This work is devoted to the theory of radicals of modules ([1], [4]-[7]) and contains
the investigation of a new operation in the class of preradicals of a module category.

Let R be a ring with unity and R-Mod be the category of unitary left R-modules.
We remind that a preradical r of R-Mod is a subfunctor of identity functor of
R-Mod, i.e. r associates to every module M ∈ R-Mod a submodule r (M) ⊆ M
such that f (r (M)) ⊆ r (M ′) for every R-morphism f : M → M ′.

We denote by PR the class of all preradicals of the category R-Mod. In this
class four operation are defined [4]:

1) the meet ∧
α∈A

rα of a family of preradicals {rα}α∈A
:

(

∧
α∈A

rα

)

(M)
def
=

⋂

α∈A

rα (M), M ∈ R-Mod;

2) the join ∨
α∈A

rα of a family of preradicals {rα}α∈A
:

(

∨
α∈A

rα

)

(M)
def
=

∑

α∈A

rα (M), M ∈ R-Mod;

3) the product r · s of preradicals r, s ∈ PR:

(r · s) (M)
def
= r (s (M)), M ∈ R-Mod ;

4) the coproduct r # s of preradicals r, s ∈ PR:

[(r # s) (M)]/s (M)
def
= r (M/s (M) ), M ∈ R-Mod.
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In the class PR the partial order relation ” ≤ ” is defined by the rule:

r1 ≤ r2

def
⇔ r1 (M) ⊆ r2 (M) for every M ∈ R-Mod.

The class PR is a large complete lattice with respect to the operations of meet
and join.

We remark that in the book [4] the coproduct is denoted by (r : s) and is
defined by the rule [(r : s) (M)]/r (M) = s (M/r (M) ), so (r # s) = (s : r).

The following properties of distributivity hold [4]:

(1) (∧ rα) · s = ∧ (rα · s); (2) (∨ rα) · s = ∨ (rα · s);

(3) (∧ rα) # s = ∧ (rα # s); (4) (∨ rα) # s = ∨ (rα # s)

for every family {rα}α∈A
⊆ PR and s ∈ PR.

Using these relations some new inverse operations can be defined in the class
PR. One of them, the left quotient of product with respect to join, was defined and
investigated in [2]. In this work we will study another inverse operation, namely the
left coquotient of coproduct with respect to meet. In the case of pretorsions it was
investigated by J. S. Golan by other methods in [1] (see [3]). Similar questions are
discussed in [8], [9] and [10].

Now we remind the principal types of preradicals. A preradical r ∈ PR is called:

– idempotent preradical, if r (r (M)) = r (M) for every M ∈ R-Mod (or if
r · r = r);

– radical, if r (M/r (M)) = 0 for every M ∈ R-Mod (or if r # r = r);

– idempotent radical, if both previous conditions are fulfilled;

– pretorsion (hereditary preradical), if r (N) = N
⋂

r (M) for every N ⊆ M ,
M ∈ R-Mod;

– cohereditary, if r (M/N) = (r (M) + N)/N , for every N ⊆ M ∈ R-Mod;

– torsion, if r is a hereditary radical;

– coprime, if r 6= 0 and for any t1, t2 ∈ PR, t1 # t2 ≥ r implies t1 ≥ r or
t2 ≥ r [9];

– ∨-coprime, if for any t1, t2 ∈ PR, t1 ∨ t2 ≥ r implies t1 ≥ r or t2 ≥ r [9];

– coirreducible, if for any t1, t2 ∈ PR, t1 ∨ t2 = r implies t1 = r or t2 = r
[9].

The operations of meet and join are commutative and associative, while the
operations of product and coproduct are associative. By means of these operations
four preradicals are obtained which are arranged in the following order:

r · s ≤ r ∧ s ≤ r ∨ s ≤ r # s
for every r, s ∈ PR.

During this work we will use the following facts and notions from general theory
of preradicals (see [4]−[7]).

Lemma 1.1. (Monotony of the product) For any s1, s2 ∈ PR, s1 ≤ s2 implies that
r · s1 ≤ r · s2 and s1 · r ≤ s2 · r for every r ∈ PR. �
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Lemma 1.2. (Monotony of the coproduct) For any s1, s2 ∈ PR, s1 ≤ s2 implies
that r # s1 ≤ r # s2 and s1 # r ≤ s2 # r for every r ∈ PR. �

Lemma 1.3. If the preradical r is cohereditary, then r # s = r ∨ s for every
s ∈ PR. �

Lemma 1.4. For every r, s, t ∈ PR we have:

1) (r · s) # t ≥ (r # t) · (s # t);

2) (r # s) · t ≤ (r · t) # (s · t). �

Definition 1.1. The totalizer of preradical r is the preradical
t (r) = ∧{rα ∈ PR | rα # r = 1} .

Definition 1.2. The pseudocomplement of r in PR is a preradical r⊥ ∈ PR

with the properties:

1) r ∧ r⊥ = 0;

2) If s ∈ PR is such that s > r⊥, then r ∧ s 6= 0.

Lemma 1.5. Each r ∈ PR has a unique pseudocomplement r⊥ such that if s ∈ PR

and r ∧ s = 0, then s ≤ r⊥. �

Definition 1.3. The supplement of r in PR is a preradical r∗ ∈ PR with the
properties:

1) r ∨ r∗ = 1;

2) If s ∈ PR is such that s < r∗, then r ∨ s 6= 1.

Lemma 1.6. Let r ∈ PR and r possesses the supplement r∗. If s ∈ PR and
r ∨ s = 1, then s ≥ r∗. �

2 Left coquotient with respect to meet

Now we introduce and investigate the inverse operation of coproduct with respect
to meet in the class of preradicals PR of category R-Mod.

Definition 2.1. Let r, s ∈ PR. The left coquotient with respect to meet of r by
s is defined as the least preradical among rα ∈ PR with the property rα# s ≥ r.
We denote this preradical by r ∧/# s.

We will call r the numerator and s the denominator of the coquotient r ∧/# s.

Now we mention the existence of the left coquotient for every pair of preradicals.

Lemma 2.1. For every r, s ∈ PR there exists the left coquotient r ∧/# s with respect
to meet, and it can be presented in the form r ∧/# s = ∧{rα ∈ PR | rα# s ≥ r}.
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Proof. Since 1 # s ≥ r for every s ∈ PR, the family of preradicals {rα | rα # s ≥ r}
is not empty. By the distributivity of coproduct with respect to meet of preradicals

we have

(

∧
rα # s≥ r

rα

)

# s = ∧
rα # s≥ r

(rα # s). Since rα # s ≥ r for every preradical

rα it follows that ∧
rα # s≥ r

(rα # s) ≥ r, i.e.

(

∧
rα # s≥ r

rα

)

# s ≥ r. Therefore the

preradical ∧
rα # s≥ r

rα is one of rα and it is the least among rα with the property

rα # s ≥ r. So r ∧/# s = ∧{rα ∈ PR | rα # s ≥ r}.

Moreover, from the proof of Lemma 2.1 it follows that (r ∧/# s) # s ≥ r. We will
often use this relation futher.

Lemma 2.2. For every r, s ∈ PR we have r ∧/# s ≤ r.

Proof. By Lemma 2.1 r ∧/# s = ∧{rα ∈ PR | rα # s ≥ r}. Since r # s ≥ r it follows
that r is one of preradicals rα. Therefore r ≥ ∧{rα ∈ PR | rα # s ≥ r}, i.e.
r ≥ r ∧/# s.

Now we indicate the behaviour of the left coquotient with respect to the order
relation (≤) of PR.

Proposition 2.3. (Monotony in the numerator) If r1, r2 ∈ PR and r1 ≤ r2, then
r1

∧/# s ≤ r2
∧/# s for every s ∈ PR .

Proof. From Lemma 2.1 we have r1
∧/# s = ∧{rα ∈ PR | rα # s ≥ r1} and r2

∧/# s =

∧
{

r′β ∈ PR

∣

∣

∣
r′β # s ≥ r2

}

. The relations r1 ≤ r2 and r′β # s ≥ r2 imply r′β # s ≥ r1,

so each r′β is one of preradicals rα. This proves that ∧{rα ∈ PR | rα # s ≥ r1} ≤

∧
{

r′β ∈ PR

∣

∣

∣
r′β # s ≥ r2

}

, so r1
∧/# s ≤ r2

∧/# s.

Proposition 2.4. (Antimonotony in the denominator) If s1, s2 ∈ PR and s1 ≤ s2,
then r ∧/# s1 ≥ r ∧/# s2 for every s ∈ PR .

Proof. From Lemma 2.1 we have r ∧/# s1 = ∧{rα ∈ PR | rα # s1 ≥ r} and r ∧/# s2 =

∧
{

r′β ∈ PR

∣

∣

∣
r′β # s2 ≥ r

}

. Let s1 ≤ s2. Then from the monotony of coproduct we

have rα # s1 ≤ rα # s2. Since rα # s1 ≥ r, we obtain rα # s2 ≥ r. So each preradical
rα is one of preradicals r′β , therefore

∧{rα ∈ PR | rα # s1 ≥ r} ≥ ∧
{

r′β ∈ PR

∣

∣

∣
r′β # s2 ≥ r

}

,

i.e. r ∧/# s1 ≥ r ∧/# s2.

The following fact is very useful for the further investigations.

Proposition 2.5. For every r, s, t ∈ PR we have:

r ≤ t # s ⇔ r ∧/# s ≤ t.
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Proof. (⇒) By Lemma 2.1 r ∧/# s = ∧{rα ∈ PR | rα # s ≥ r}. If t # s ≥ r, then t
is one of preradicals rα, therefore t ≥ ∧{rα ∈ PR | rα # s ≥ r} = r ∧/# s.

(⇐) Let t ≥ r ∧/# s. From the monotony of coproduct t # s ≥ (r ∧/# s) # s and
by definition of left coquotient we have (r ∧/# s) # s ≥ r, therefore t # s ≥ r.

In continuation we show some properties of the studied operation.

Proposition 2.6. For every preradicals r, s ∈ PR we have:

(r # s) ∧/# s ≤ r.

Proof. From Lemma 2.1 we have (r # s) ∧/# s = ∧{tα ∈ PR | tα # s ≥ r # s}. Since
r # s ≥ r # s, the preradical r is one of preradicals tα, therefore we obtain r ≥
∧{tα ∈ PR | tα # s ≤ r # s}, i.e. r ≥ (r # s) ∧/# s.

Proposition 2.7. For every r, s, t ∈ PR the following relations are true:

1) (r ∧/# s) ∧/# t = r ∧/# (t # s);

2) (r # s) ∧/# t ≤ r # (s ∧/# t).

Proof. 1) From Lemma 2.1 we have r ∧/# (t # s) = ∧{rα ∈ PR | rα # (t # s) ≥ r}
and (r ∧/# s) ∧/# t = ∧{tβ ∈ PR | tβ # t ≥ r ∧/# s}.

(≤) Let rα # (t # s) ≥ r. Then (rα # t) # s ≥ r and from Proposition 2.5
we obtain rα # t ≥ r ∧/# s. So any preradical rα is one of preradicals tβ, there-
fore we obtain ∧{rα ∈ PR | rα # (t # s) ≥ r} ≥ ∧{ tβ ∈ PR | tβ # t ≥ r ∧/# s} , i.e.
r ∧/# (t # s) ≥ (r ∧/# s) ∧/# t.

(≥) Let tβ # t ≥ r ∧/# s. Using the monotony of coproduct we obtain
(tβ # t) # s ≥ (r ∧/# s) # s, but from the definition of left coquotient (r ∧/# s) # s ≥ r,
so tβ # (t # s) = (tβ # t) # s ≥ r. This shows that each preradical tβ is one of pre-
radicals rα, therefore ∧{tβ ∈ PR | tβ # t ≥ r ∧/# s} ≥ ∧{rα ∈ PR | rα # (t # s) ≥ r},
i.e (r ∧/# s) ∧/# t ≥ r ∧/# (t # s).

2) By definition of left coquotient s ≤ (s ∧/# t) # t. Using the monotony of
coproduct we have r # s ≤ r # [(s ∧/# t) # t ] = [ r # (s ∧/# t)] # t, and from Proposition
2.5 we obtain (r # s) ∧/# t ≤ r # (s ∧/# t).

Proposition 2.8. For every r, s, t ∈ PR the following relations hold:

1) (r ∧/# t) ∧/# (s ∧/# t) ≤ r ∧/# s;

2) (r # t) ∧/# (s # t) ≤ r ∧/# s.

Proof. 1) From Proposition 2.5 the relation of this statement is equivalent to the
relation r ∧/# t ≤ (r ∧/# s) # (s ∧/# t).

By definition of left coquotient r ≤ (r ∧/# s) # s and s ≤ (s ∧/# t) # t, therefore
from the monotony and the associativity of coproduct we obtain r ≤ (r ∧/# s) # s ≤
(r ∧/# s) # [(s ∧/# t) # t ] = [(r ∧/# s) # (s ∧/# t)] # t. Applying Proposition 2.5 we have
r ∧/# t ≤ (r ∧/# s) # (s ∧/# t).
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2) From Proposition 2.5 the relation of this statement is equivalent to the relation
r # t ≤ (r ∧/# s) # (s # t).

By definition of left coquotient r ≤ (r ∧/# s) # s. Using the monotony of coproduct
we obtain r # t ≤ [(r ∧/# s) # s ] # t = (r ∧/# s) # (s # t).

Now we will discuss the question of relations beetween the left coquotient with
respect to meet and the lattice operations of PR.

Proposition 2.9. (The left distributivity of left coquotient r ∧/# s relative to join)
Let s ∈ PR. Then for every family of preradicals {rα|α ∈ A} the following relation
holds:

(

∨
α∈A

rα

)

∧/# s = ∨
α∈A

(rα
∧/# s).

Proof. (≤) By definition of left coquotient we have rα ≤ (rα
∧/# s) # s for every

α ∈ A. Then ∨
α∈A

rα ≤ ∨
α∈A

[(rα
∧/# s) # s ]. From the distributivity of coproduct

of preradicals relative to join it follows that ∨
α∈A

rα ≤

[

∨
α∈A

(rα
∧/# s)

]

# s. Using

Proposition 2.5 we obtain

(

∨
α∈A

rα

)

∧/# s ≤ ∨
α∈A

(rα
∧/# s).

(≥) From Lemma 2.1 we have

(

∨
α∈A

rα

)

∧/# s = ∧

{

tβ ∈ PR | tβ # s ≥ ∨
α∈A

rα

}

and ∨
α∈A

(rα
∧/# s) = ∨

α∈A

(

∧
r′γ # s≥ rα

r′γ

)

.

Let tβ # s ≥ ∨
α∈A

rα. Since ∨
α∈A

rα ≥ rα for every α ∈ A we have

tβ # s ≥ rα, so each preradical tβ is one of preradicals r′γ . This implies the rela-

tion ∧

{

tβ ∈ PR | tβ # s ≥ ∨
α∈A

rα

}

≥ ∧{r′γ ∈ PR | r′γ # s ≥ rα} for every α ∈ A,

therefore ∧

{

tβ ∈ PR | tβ # s ≥ ∨
α∈A

rα

}

≥ ∨
α∈A

(∧{r′γ ∈ PR | r′γ # s ≥ rα}), which

means that

(

∨
α∈A

rα

)

∧/# s ≥ ∨
α∈A

(rα
∧/# s).

Proposition 2.10. In the class PR the following relations are true:

1)

(

∧
α∈A

rα

)

∧/# s ≤ ∧
α∈A

(rα
∧/# s);

2) r ∧/#

(

∧
α∈A

sα

)

≥ ∨
α∈A

(r ∧/# sα);

3) r ∧/#

(

∨
α∈A

sα

)

≤ ∧
α∈A

(r ∧/# sα).

Proof. 1) By the definition of left coquotient we have rα ≤ (rα
∧/# s) # s for every

α ∈ A, therefore ∧
α∈A

rα ≤ ∧
α∈A

[(rα
∧/# s) # s]. From the distributivity of coproduct
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of preradicals relative to meet it follows that ∧
α∈A

rα ≤

[

∧
α∈A

(rα
∧/# s)

]

# s and using

Proposition 2.5 we obtain

(

∧
α∈A

rα

)

∧/# s ≤ ∧
α∈A

(rα
∧/# s).

2) For every α ∈ A we have ∧
α∈A

sα ≤ sα. From the antimonotony in the

denominator of left coquotient it follows that r ∧/#

(

∧
α∈A

sα

)

≥ r ∧/# sα for all α ∈ A,

therefore r ∧/#

(

∧
α∈A

sα

)

≥ ∨
α∈A

(r ∧/# sα).

3) For every α ∈ A we have ∨
α∈A

sα ≥ sα. From the antimonotony in the

denominator of left coquotient it follows that r ∧/#

(

∨
α∈A

sα

)

≤ r ∧/# sα for all α ∈ A,

therefore r ∧/#

(

∨
α∈A

sα

)

≤ ∧
α∈A

(r ∧/# sα).

3 The left coquotient r
∧/# s in particular cases

In this section we study some particular cases of left coquotient with respect to
meet, its relations with special constructions in large complete lattice PR and the
connection with some types of preradicals (coprime, ∨-coprime, coirreducible ), as
well as the arrangement (relative position) of preradicals obtained by the studied
operation.

Proposition 3.1. For every preradicals r, s ∈ PR the following conditions are
equivalent:

1) r ≤ s;

2) r ∧/# s = 0.

Proof. 1) ⇒ 2) Let r ≤ s. So r ≤ 0 # s and from Proposition 2.5 we obtain
r ∧/# s ≤ 0, therefore r ∧/# s = 0.

2) ⇒ 1) Let r ∧/# s = 0. By definition of left coquotient we have (r ∧/# s) # s ≥ r,
so 0 # s ≥ r, i.e s ≥ r.

Proposition 3.2. Let r, s ∈ PR. Then:

1) 1 ∧/# s = t (s)(see Def. 1.1);

2) r ∧/# 0 = r.

Proof. From the definition of left coquotient we have:

1) 1 ∧/# s = ∧{rα ∈ PR | rα # s ≥ 1} = ∧{rα ∈ PR | rα # s = 1} = t (s);

2) r ∧/# 0 = ∧{rα ∈ PR | rα # 0 ≥ r} = ∧{rα ∈ PR | rα ≥ r} = r.
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From Propositions 3.1 and 3.2 such particular cases follow:

(1) 0 ∧/# 0 = 0; (2) r ∧/# r = 0 for every r ∈ PR;

(3) s ∧/# 1 = 0 for every s ∈ PR; (4) 1 ∧/# 1 = t (1) = 0.

As in Proposition 3.1 (r ∧/# r) # r = 0 # r = r for every r ∈ PR.
Moreover, the distributivity of coproduct of preradicals relative to meet implies

t (s) # s =

(

∧
rα # s =1

rα

)

# s = ∧
rα # s= 1

(rα # s) = 1 for every s ∈ PR.

Now we will indicate the relations between the totalizer t (r) of preradical r
and such constructions in the large complete lattice PR as pseudocomplement and
supplement (see Def. 1.2, Def. 1.3).

Proposition 3.3. For every preradical s ∈ PR we have t (s) ≥ s⊥.

Proof. By definition t (s) = ∧{rα | rα # s = 1}. The pseudocomplement s⊥ of
preradical s by definition has the property s ∧ s⊥ = 0. Since s · s⊥ ≤ s ∧ s⊥ = 0,
we obtain s · s⊥ = 0. We have that t (s) # s = 1, so s⊥ = 1 · s⊥ = (t (s) # s) · s⊥.
From Lemma 1.4 (t (s) # s) · s⊥ ≤

(

t (s) · s⊥
)

#

(

s · s⊥
)

=
(

t (s) · s⊥
)

# 0 = t (s) · s⊥.
Therefore s⊥ ≤ t (s) · s⊥, but t (s) · s⊥ ≤ t (s), so s⊥ ≤ t (s).

Moreover, we have s⊥ ≤ t (s) · s⊥, but s⊥ ≥ t (s) · s⊥, so s⊥ = t (s) · s⊥.

Proposition 3.4. Let s ∈ PR and s have the supplement s∗. Then t (s) ≤ s∗.

Proof. By definition t (s) = ∧{rα | rα # s = 1}. The supplement s∗ of s from the
definition has the property s∨ s∗ = 1. Since s∗ # s ≥ s∗ ∨ s = s∨ s∗ = 1, we obtain
s∗ # s = 1. So s∗ is one of preradicals rα, therefore s∗ ≥ ∧{rα | rα # s = 1}, i.e.
s∗ ≥ t (s).

Moreover, from Proposition 2.3 r ∧/# s ≤ 1 ∧/# s = t (s), therefore r ∧/# s ≤ s∗.
The next two statements show when the cancellation properties for left coquo-

tient hold (see Proposition 2.6).

Proposition 3.5. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r # s) ∧/# s;

2) r = t ∧/# s for some preradical t ∈ PR.

Proof. 1) ⇒ 2) If r = (r # s) ∧/# s, then r = t ∧/# s with t = r # s.
2) ⇒ 1) Let r = t ∧/# s for some preradical t. By definition of left coquotient

(t ∧/# s) # s ≥ t. From Proposition 2.3 we obtain [(t ∧/# s) # s] ∧/# s ≥ t ∧/# s. But from
Proposition 2.6 [(t ∧/# s) # s] ∧/# s ≤ t ∧/# s, therefore we have [(t ∧/# s) # s] ∧/# s = t ∧/# s.
Since t ∧/# s = r, we obtain (r # s) ∧/# s = r.

Proposition 3.6. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r ∧/# s) # s;

2) r = t # s for some preradical t ∈ PR.
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Proof. 1) ⇒ 2) If r = (r ∧/# s) # s, then r = t # s with t = r ∧/# s.
2) ⇒ 1) Let r = t # s for some preradical t. By Proposition 2.6 (t # s) ∧/# s ≤ t.

From the monotony of coproduct it follows that [(t # s) ∧/# s] # s ≤ t # s. But from the
definition of left coquotient [(t # s) ∧/# s] # s ≥ t # s, therefore [(t # s) ∧/# s] # s = t # s.
Since t # s = r, we have (r ∧/# s) # s = r.

Now we will study the behaviour of the left coquotient r ∧/# s in the cases of
such types of preradicals as coprime, ∨-coprime and coirreducible.

Proposition 3.7. The preradical r is coprime if and only if for every preradical
s we have r ∧/# s = 0 or r ∧/# s = r.

Proof. (⇒) Let r 6= 0. By definition (r ∧/# s) # s ≥ r and if r is coprime, then
we have r ∧/# s ≥ r or s ≥ r. If r ∧/# s ≥ r, then since by Lemma 2.2 r ∧/# s ≤ r, it
follows that r ∧/# s = r. If s ≥ r, then from Proposition 3.1 we have r ∧/# s = 0.

(⇐) Let t1 # t2 ≥ r for some preradicals t1, t2 ∈ PR. From Proposition 2.5
we obtain t1 ≥ r ∧/# t2. For the preradical t2 from the condition of this proposition
we have r ∧/# t2 = 0 or r ∧/# t2 = r. If r ∧/# t2 = 0, then from Proposition 3.1 it
follows that t2 ≥ r. If r ∧/# t2 = r, then t1 ≥ r ∧/# t2 = r. So for every t1, t2 ∈ PR

with t1 # t2 ≥ r we have t1 ≥ r or t2 ≥ r, which means that the preradical r is
coprime.

Proposition 3.8. If the preradical r is ∨-coprime, then the coquotient r ∧/# s is
∨-coprime for every s ∈ PR.

Proof. Suppose that t1 ∨ t2 ≥ r ∧/# s, for some t1, t2 ∈ PR. Then from Proposition
2.5 we obtain (t1 ∨ t2) # s ≥ r. From the distributivity of coproduct of preradicals
relative to join we have (t1 # s) ∨ (t2 # s) ≥ r. If r is ∨-coprime, then t1 # s ≥ r
or t2 # s ≥ r. From Proposition 2.5 we obtain that t1 ≥ r ∧/# s or t2 ≥ r ∧/# s. So
for every preradicals t1, t2 ∈ PR with t1 ∨ t2 ≥ r ∧/# s we have t1 ≥ r ∧/# s or
t2 ≥ r ∧/# s, which means that the preradical r ∧/# s is ∨-coprime.

Proposition 3.9. Let r, s ∈ PR and r = t # s for some preradical t ∈ PR. If
the preradical r is coirreducible, then the preradical r ∧/# s is coirreducible.

Proof. Let t1 ∨ t2 = r ∧/# s for some preradicals t1, t2 ∈ PR. If r = t # s for some
preradical t, then by Proposition 3.6 r = (r ∧/# s) # s, so r = (t1 ∨ t2) # s. From
the distributivity of coproduct of preradicals relative to join r = (t1 # s) ∨ (t2 # s).
If r is coirreducible, then t1 # s = r or t2 # s = r.

If t1 # s = r, then from Proposition 2.5 we have t1 ≥ r ∧/# s. But t1 ≤ r ∧/# s,
because t1 ∨ t2 = r ∧/# s, therefore t1 = r ∧/# s.

If t2 # s = r, then similarly we obtain t2 = r ∧/# s.
So for every preradicals t1, t2 ∈ PR with t1 ∨ t2 = r ∧/# s we have t1 = r ∧/# s

or t2 = r ∧/# s, which means that the preradical r ∧/# s is coirreducible.

The operation of left coquotient with respect to meet implies some order relations
between the associated preradicals. To see that we firstly prove
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Proposition 3.10. For every r, s, t ∈ PR the following relations are true:

1) r ∧/# s = (r ∨ s) ∧/# s;

2) (r ∧/# s) # s ≥ r ∨ s.

Proof. 1) From Proposition 2.9 we have that (r ∨ s) ∧/# s = (r ∧/# s) ∨ (s ∧/# s), but
s ∧/# s = 0, so (r ∨ s) ∧/# s = (r ∧/# s) ∨ 0 = r ∧/# s.

Moreover, since r # s ≥ r ∨ s from Proposition 2.3 we obtain
(r # s) ∧/# s ≥ (r ∨ s) ∧/# s = r ∧/# s.

2) By 1) we have r ∧/# s = (r ∨ s) ∧/# s and so (r ∧/# s) # s = ((r ∨ s) ∧/# s) # s.
From the definition of left coquotient we have ((r ∨ s) ∧/# s) # s ≥ r ∨ s, therefore
(r ∧/# s) # s ≥ r ∨ s.

Corollary 3.11. 1) For every preradicals r, s ∈ PR the following relations hold:
r ∧/# s ≤ (r # s) ∧/# s ≤ r ≤ r ∨ s ≤ (r ∧/#s) # s ≤ r # s;

2) If r is cohereditary, then
r ∧/# s = (r # s) ∧/# s ≤ r ≤ r ∨ s = (r ∧/#s) # s = r # s

for every s ∈ PR. �

We remark that the operations of left quotient with respect to join and left
coquotient with respect to meet are complete in the sense of existence for any two
preradicals.

In conclusion, we can say that in this work is introduced and studied a new (com-
plete) operation (left coquotient with respect to meet) in the class of preradicals PR

of R-Mod, which is dual the previous operation (left quotient with respect to join)
and possesses similar properties. The indicated facts dualise the results of paper [2].
In the particular case of pretorsions as corrolaries we obtain a series of results of J.
S. Golan [1], as is indicated in [3].
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