About one special inversion matrix of non-symmetric n - $I P$-loop

Leonid Ursu

Abstract

It is known that $n-I P$-quasigroups have more than one inversion matrix [1]. It is proved that one of these inversion matrices in the class of non-symmetric n - $I P$-loops is so-called matrix $\left[I_{i j}\right]$ of permutations, any of which has order two and fixes the unit element of the loop.

Keywords: quasigroup, loop, n - $I P$-quasigroup, n - $I P$-loop, inversion permutation, inversion matrix, isostrophism.

1 Main concepts and definitions

A quasigroup $Q(A)$ of arity $n, n \geq 2$, is called an n - $I P$-quasigroup if there exist permutations $\nu_{i j}, i, j \in \overline{1, n}$ of the set Q, such that the following identities are true:

$$
\begin{equation*}
A\left(\left\{\nu_{i j} x_{j}\right\}_{j=1}^{i-1}, A\left(x_{1}^{n}\right),\left\{\nu_{i j} x_{j}\right\}_{j=i+1}^{n}\right)=x_{i}, \tag{1}
\end{equation*}
$$

for all $x_{1}^{n} \in Q^{n}$, where $\nu_{i i}=\nu_{i n+1}=\varepsilon$. Here ε denotes the identity permutation of the set Q [1]. See [1] for more information on n-ary quasigroups.

The matrix

$$
\left[\nu_{i j}\right]=\left[\begin{array}{cccccc}
\varepsilon & \nu_{12} & \nu_{13} & \ldots & \nu_{1 n} & \varepsilon \\
\nu_{21} & \varepsilon & \nu_{23} & \ldots & \nu_{2 n} & \varepsilon \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\nu_{n 1} & \nu_{n 2} & \nu_{n 3} & \ldots & \varepsilon & \varepsilon
\end{array}\right]
$$

(c) 2017 by Leonid Ursu
is called an inversion matrix for a $n-I P$-quasigroup, the permutations $\nu_{i, j}$ are called inversion permutations. Any i-th row of an inversion matrix is called i-th inversion system for a n - $I P$-quasigroup.

The least common multiple (LCM) of orders of permutations of i-th inversion system is called the order of this system. The least common multiple (LCM) of orders of all inversion systems is called the order of inversion matrix.

The operation

$$
B\left(x_{1}^{n}\right)=\alpha_{n+1}^{-1} A\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}\right)
$$

for all $x_{1}^{n} \in Q$, where α_{1}^{n+1} are permutations of the set Q, is called an isotope of the n-ary quasigroup $Q(A)$. If $A=B$, then we have an autotopy of the n-ary quasigroup $Q(A)$.

Recall that an n-ary quasigroup is an n-ary groupoid $Q(A)$, such that in the equality $A\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n+1}$ any n elements of the set $\left\{x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right\}$ uniquely specifies the remaining one [1]. Therefore we can define a new quasigroup operation

$$
\begin{equation*}
{ }^{\pi_{i}} A\left(x_{1}^{i-1}, x_{n+1}, x_{i+1}^{n}\right)=x_{i} \tag{2}
\end{equation*}
$$

that is called the i-th inverse operation of the operation A.
Let σ be a permutation of a set that consists from $(n+1)$ elements. The operation

$$
{ }^{\sigma} A\left(x_{\sigma 1}^{\sigma n}\right)=x_{\sigma(n+1)}
$$

is called the σ-parastrophe of the operation A. If $\sigma(n+1)=n+1$, then we call this parastrophe a main parastrophe.

Isostrophy is a combination of an isotopy T and a parastrophy σ, i.e., an isostrophic image of an n-ary quasigroup $Q(A)$ is a parastrophic image of its isotopic image, and it is denoted by $A^{(\sigma, T)}$. If $A^{(\sigma, T)}=A$, then the pair (σ, T) is called an autostrophy of the n-ary quasigroup $Q(A)$ [1].

From identity (1) it follows that, for n-ary-IP-quasigroup $Q(A)$, the expression $T_{i}^{2}=\left(\varepsilon, \nu_{i 2}^{2}, \nu_{i 3}^{2}, \ldots, \nu_{i i-1}^{2}, \varepsilon, \nu_{i i+1}^{2}, \nu_{i n}^{2}, \varepsilon\right)$ is an autotopy of the n-ary quasigroup $Q(A)$.

Therefore

$$
\begin{equation*}
{ }^{\pi_{i}} A=A^{T_{i}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\left(\pi_{i}, T_{i}\right)}=A \tag{4}
\end{equation*}
$$

for all $i \in \overline{1, n}$. Any of equalities (3) and (4) defines an n-IP-quasigroup. Below, for convenience, we denote the operation A by ().
An element e is called a unit of the n-ary operation $Q()$, if the following equality is true: $\left(\stackrel{i-1}{e}, x,{ }_{e}{ }^{n-i}\right)=x$, for all $x \in Q$ and $i \in \overline{1, n}$. n-Ary quasigroups with unit elements are called n-ary loops [1, 2]. Loops of arity $n>2$ can have more than one unit element [1]. n -IP-quasigroups with an least one unit element are called n-IP-loops $[2,3]$.

Permutations $I_{i j}$ of the set Q are defined by the equalities

$$
\left(\stackrel{i-1}{e}, x, \stackrel{j-i-1}{e}, I_{i j} x, \stackrel{n-j}{e}\right)=e
$$

for all $x \in Q$ and $i, j \in \overline{1, n}$.
If the tuple $\left(\varepsilon, \nu_{12}, \nu_{13}, \ldots, \nu_{1 n}, \varepsilon\right)$ is the first inversion system of n-IP-quasigroup $Q()$, with the inversion matrix $\left[\nu_{i j}\right]$, then the tuple

$$
\left(\varepsilon, \nu_{12}^{2 n-1}, \nu_{13}^{2 n-1}, \ldots, \nu_{1 n}^{2 n-1}, \varepsilon\right)
$$

is also an (first) inversion system, since the tuple $\left(\varepsilon, \nu_{12}^{2 n}, \nu_{13}^{2 n}, \ldots, \nu_{1 n}^{2 n}, \varepsilon\right)$ is an autotopy of the quasigroup $Q()$. This is true for other $(i=$ $2,3, \ldots$) inversion systems.

Consider the matrix

$$
\left[I_{i j}\right]=\left[\begin{array}{cccccc}
\varepsilon & I_{12} & I_{13} & \ldots & I_{1 n} & \varepsilon \\
I_{21} & \varepsilon & I_{23} & \ldots & I_{2 n} & \varepsilon \\
\ldots & \ldots & \ldots & \ldots & \ldots & . \\
I_{n 1} & I_{n 2} & I_{n 3} & \ldots & \varepsilon & \varepsilon
\end{array}\right]
$$

An n-Quasigroup $Q(A)$ is called symmetric, if $A\left(x_{\varphi 1}^{\varphi n}\right)=A\left(x_{1}^{n}\right)$, for all $\varphi \in S_{n}$, where S_{n} is the symmetric group defined on the set Q, otherwise it is called non-symmetric $[2,3]$.

2 Main results

The first constructed example of an 3-IP-loop have the inversion matrix $\left[I_{i j}\right]$. V.D. Belousov proposed the following problem: is it true that any n-IP-loop has among inversion matrices the matrix $\left[I_{i j}\right]$?

Lemma. If $Q()$ is a non-symmetric n-IP-loop with the inversion matrix $\left[\nu_{i j}\right]$ and unit e, then any non-identity inversion permutation from any inversion matrix of even order does not fix the unit element e.
Corollary. If $Q()$ is a non-symmetric n-IP-loop with the inversion matrix $\left[\nu_{i j}\right]$ and unit e, then any non-identity inversion permutation from any inversion matrix of odd order fix the unit element e.
Theorem. The matrix $\left[I_{i j}\right]$ is one of the inversion matrices in any non-symmetric n-IP-loop.

References

[1] V.D. Belousov. n-Ary Quasigroups, Stiintsa, Kishinev, (1971).
[2] L.A. Ursu. n-Ary loop with the inverse property. Matem. Issled., vyp. 113, Ştiinţa, Chişinău, 1990, pp. 108-118 (Russian).
[3] L.A. Ursu. About one of inverse matrices of a nonsymmetric n-IPloop. CAIM, Communications, Chişinău, 2012, p. 216.
[4] L.A. Ursu. About one special inversion matrix of 3-ary and 4-ary IP-loops. The Third Conference of Mathematical Society of the Republic of Moldova, Chişinău, 2014, pp. 166-169.

Leonid Ursu
Assistant Professor/Moldova State Technical University
Email: matematica@mail.utm.md

