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On the inverse operations in the class of preradicals
of a module category, I

Ion Jardan

Abstract. In the class PR of preradicals of the category of left R-modules R-
Mod a new operation is defined and studied, namely the left quotient with respect to
join. Some properties of this operation are shown, its compatibility with the lattice
operations of PR (meet and join of preradicals), as well as the relations with some
constructions in the ”big” lattice PR . Also some particular cases are examined.
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1 Introduction and preliminary facts

The work is concerned with the theory of radicals of modules ([1], [2], [3]) and is
devoted to investigation of a new operation in the class of preradicals of a module
category.

Let R be a ring with unity and R-Mod be the category of unitary left R-modules.
A preradical r of R-Mod is a subfunctor of identity functor of R-Mod, i.e. r
associates to every module M ∈ R-Mod a submodule r (M) ⊆ M such that
f (r (M)) ⊆ r (M ′) for every R-morphism f : M → M ′.

We denote by PR the class of all preradicals of the category R-Mod, where the
partial order relation is defined as follows:

r1 ≤ r2
def⇔ r1 (M) ⊆ r2 (M) for every M ∈ R-Mod.

In the class PR the following operations are defined ([1]):

1) the meet ∧
α∈A

rα of the family of preradicals {rα}α∈A ⊆ PR :
(
∧

α∈A
rα

)
(M)

def
=

⋂
α∈A

rα (M), M ∈ R-Mod;

2) the join ∨
α∈A

rα of the family of preradicals {rα}α∈A ⊆ PR :
(
∨

α∈A
rα

)
(M)

def
=

∑
α∈A

rα (M), M ∈ R-Mod;

3) the product r · s of preradicals r, s ∈ PR:

(r · s) (M)
def
= r (s (M)), M ∈ R-Mod ;
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4) the coproduct r # s of preradicals r, s ∈ PR:

[(r # s) (M)]/s (M)
def
= r (M/s (M) ), M ∈ R-Mod.

The class PR is a ”big” complete lattice with respect to the operations meet
and join.

We remark that in the book [1] the coproduct is denoted by (r : s) and is
defined by the rule [(r : s) (M)]/r (M) = s (M/r (M) ), so (r # s) = (s : r).

The following properties of distributivity hold ([1]):
(1) (∧ rα) · s = ∧ (rα · s); (2) (∨ rα) · s = ∨ (rα · s);
(3) (∧ rα) # s = ∧ (rα# s); (4) (∨ rα) # s = ∨ (rα# s),

for every family of preradicals {rα}α∈A ⊆ PR and s ∈ PR.
These relations permit to define some new operations in the class PR. In the

present work it is introduced and studied one of these operations, namely the left
quotient with respect to join. The similar questions are discussed in [2], [6], [7] and
[8].

Now we remind the principal types of preradicals. A preradical r ∈ PR is called:

– an idempotent preradical, if r (r (M)) = r (M) for every M ∈ R-Mod (or if
r · r = r);

– a radical, if r (M/r (M)) = 0 for every M ∈ R-Mod (or if r # r = r);

– an idempotent radical, if both previous conditions are fulfilled;

– a pretorsion, if r (N) = N
⋂

r (M) for every N ⊆ M ∈ R-Mod;

– a torsion, if r is a radical and a pretorsion;

– prime, if r 6= 1 and for any t1, t2 ∈ PR, t1 · t2 ≤ r implies either t1 ≤ r or
t2 ≤ r;

– ∧-prime, if for any t1, t2 ∈ PR, t1 ∧ t2 ≤ r implies either t1 ≤ r or t2 ≤ r;

– irreducible, if for any t1, t2 ∈ PR, t1 ∧ t2 = r implies t1 = r or t2 = r.

The operations meet and join are commutative and associative, but the product
and coproduct are only associative. By means of these operations four preradicals
are obtained which are arranged in the following order:

r · s ≤ r ∧ s ≤ r ∨ s ≤ r # s
for every r, s ∈ PR.

In the course of this work we will need the following facts and notions from
general theory of preradicals (see [1]−[5]).

Lemma 1.1. (Monotony of the product) For any s1, s2 ∈ PR, s1 ≤ s2 implies that
r · s1 ≤ r · s2 and s1 · r ≤ s2 · r for every r ∈ PR. ¤

Lemma 1.2. (Monotony of the coproduct) For any s1, s2 ∈ PR, s1 ≤ s2 implies
that r # s1 ≤ r # s2 and s1 # r ≤ s2 # r for every r ∈ PR. ¤

Lemma 1.3. If r is a pretorsion, then r · s = r ∧ s for every s ∈ PR. ¤
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Lemma 1.4. For every r, s, t ∈ PR we have:

1) (r · s) # t ≥ (r # t) · (s # t);

2) (r # s) · t ≤ (r · t) # (s · t). ¤

Definition 1.1. The annihilator of preradical r is the preradical
a (r) = ∨{rα ∈ PR | rα · r = 0} .

Definition 1.2. The pseudocomplement of r in PR is a preradical r⊥ ∈ PR
with the properties:

1) r ∧ r⊥ = 0;

2) If s ∈ PR is such that s > r⊥, then r ∧ s 6= 0.

Lemma 1.5. Each r ∈ PR has a unique pseudocomplement r⊥ such that if s ∈ PR
and r ∧ s = 0, then s ≤ r⊥. ¤

Definition 1.3. The supplement of r in PR is a preradical r∗ ∈ PR with the
properties:

1) r ∨ r∗ = 1;

2) If s ∈ PR is such that s < r∗, then r ∨ s 6= 1.

Lemma 1.6. Let r ∈ PR and r possesses the supplement r∗. If s ∈ PR and
r ∨ s = 1, then s ≥ r∗. ¤

2 Left quotient with respect to join

We investigate the class of preradicals PR (∧,∨, ·, #) of category R-Mod provided
with four operations defined above. Using these operations and the aforementioned
properties of distributivity, some new inverse operations can be defined. One of
them is defined and studied further.

Definition 2.1. Let r, s ∈ PR. The left quotient with respect to join of r by s
is defined as the greatest preradical among rα ∈ PR with the property rα · s ≤ r.
We denote this preradical by r ∨/· s.

We say that r is the numerator and s is the denominator of the quotient
r ∨/· s.

Now we mention the existence of the left quotient for every pair of preradicals.

Lemma 2.1. For every r, s ∈ PR there exists the left quotient r ∨/· s with respect
to join, and it can be presented in the form r ∨/· s = ∨{rα ∈ PR | rα · s ≤ r}.
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Proof. The family of preradicals {rα ∈ PR | rα · s ≤ r} is not empty, because 0 · s ≤
≤ r. By the distributivity of the product with respect to the join of preradicals we

obtain
(

∨
rα· s≤ r

rα

)
· s = ∨

rα· s≤ r
(rα · s). Since rα · s ≤ r for preradicals rα, we

have ∨
rα· s≤ r

(rα · s) ≤ r, therefore
(

∨
rα· s≤ r

rα

)
· s ≤ r. So the preradical ∨

rα· s≤ r
rα

is one of rα, moreover it is the greatest among rα with the property rα · s ≤ r.
Therefore we have ∨{rα ∈ PR | rα · s ≤ r} = r ∨/· s.

From the proof of Lemma 2.1 it follows that (r ∨/· s) · s ≤ r and we will use this
relation often in continuation.

Lemma 2.2. For every r, s ∈ PR we have r ∨/· s ≥ r.

Proof. Since r · s ≤ r and r ∨/· s = ∨{rα ∈ PR | rα · s ≤ r}, it is clear that r is
one of preradicals rα. Therefore r ≤ ∨{rα ∈ PR | rα · s ≤ r}, so r ≤ r ∨/· s.

The next two statements show the connection between the left quotient r ∨/· s
and the partial order (≤) in PR .

Proposition 2.3. (Monotony in the numerator) If r1, r2 ∈ PR and r1 ≤ r2, then
r1

∨/· s ≤ r2
∨/· s for every s ∈ PR .

Proof. From Lemma 2.1 we have: r1
∨/· s = ∨{rα ∈ PR | rα · s ≤ r1} and r2

∨/· s =
∨{r′α ∈ PR | r′α · s ≤ r2}. The relations r1 ≤ r2 and rα ·s ≤ r1 imply rα ·s ≤ r2, so
each rα is one of the preradicals r′α. This proves that ∨{rα ∈ PR | rα · s ≤ r1} ≤
∨{r′α ∈ PR | r′α · s ≤ r2}, so r1

∨/· s ≤ r2
∨/· s.

Proposition 2.4. (Antimonotony in the denominator) If s1, s2 ∈ PR and s1 ≤ s2,
then r ∨/· s1 ≥ r ∨/· s2 for every s ∈ PR .

Proof. From Lemma 2.1 we have:
r ∨/· s1 = ∨{rα ∈ PR | rα · s1 ≤ r}, r ∨/· s2 = ∨{r′α ∈ PR | r′α · s2 ≤ r}.

If s1 ≤ s2, then r′α · s1 ≤ r′α · s2, but r′α · s2 ≤ r, therefore r′α · s1 ≤ r. So each
preradical r′α is one of the preradicals rα and we obtain

∨{r′α ∈ PR | r′α · s2 ≤ r} ≤ ∨{rα ∈ PR | rα · s1 ≤ r} ,
i.e. r ∨/· s1 ≥ r ∨/· s2.

The following result is particulary useful in the further studies.

Proposition 2.5. For every r, s, t ∈ PR we have:

r ≥ t · s ⇔ r ∨/· s ≥ t .

Proof. (⇒) Let t · s ≤ r. By Lemma 2.1 we have r ∨/· s = ∨{rα ∈ PR | rα · s ≤ r}.
Then t is one of the preradicals rα, therefore t ≤ ∨{rα ∈ PR | rα · s ≤ r} = r ∨/· s.

(⇐) Let t ≤ r ∨/· s. Then t · s ≤ (r ∨/· s) · s and by definition (r ∨/· s) · s ≤ r,
therefore t · s ≤ r.



ON THE INVERSE OPERATIONS IN THE CLASS OF PRERADICALS . . . 61

Proposition 2.6. (r · s) ∨/· s ≥ r for every preradicals r, s ∈ PR.

Proof. From Lemma 2.1 we have (r · s) ∨/· s = ∨{ tα ∈ PR | tα · s ≤ r · s}. Since
r · s ≤ r · s we have that r is one of the preradicals tα, therefore r ≤
∨{ tα ∈ PR | tα · s ≤ r · s}, i.e. r ≤ (r · s) ∨/· s.

Proposition 2.7. For every r, s, t ∈ PR the following relations are true:

1) (r ∨/· s) ∨/· t = r ∨/· (t · s);
2) (r · s) ∨/· t ≥ r · (s ∨/· t).

Proof. 1) From Lemma 2.1 we have r ∨/· s = ∨{rα ∈ PR | rα · s ≤ r}, (r ∨/· s) ∨/· t =
= ∨{ tβ ∈ PR | tβ · t ≤ r ∨/· s} and r ∨/· (t · s) = ∨{r′γ ∈ PR | r′γ · (t · s) ≤ r}.

(≤) If tβ · t ≤ r ∨/· s, then from the monotony of the product (tβ · t) · s ≤
(r ∨/· s) · s. By definition of the left quotient (r ∨/· s) · s ≤ r, so tβ · (t · s) =
(tβ · t) · s ≤ r. This shows that each tβ is one of the preradicals r′γ . There-
fore ∨{ tβ ∈ PR | tβ · t ≤ r ∨/· s} ≤ ≤ ∨{r′γ ∈ PR | r′γ · (t · s) ≤ r}, i.e (r ∨/· s) ∨/· t ≤
r ∨/· (t · s).

(≥) Let r′γ ·(t · s) ≤ r. Then from the associativity of the product (r′γ · t) ·s ≤ r,
therefore any preradical of the form (r′γ · t) is one of the preradicals rα.
This implies the following relation (r′γ · t) ≤ ∨{rα ∈ PR | rα · s ≤ r} = r ∨/· s,
which shows that each preradical r′γ is one of the preradicals tβ. There-
fore ∨{r′γ ∈ PR | r′γ · (t · s) ≤ r} ≤ ≤ ∨{ tβ ∈ PR | tβ · s ≤ r ∨/· s}, i.e. r ∨/· (t · s) ≤
(r ∨/· s) ∨/· t.

2) By the definition of left the quotient s ≥ (s ∨/· t)·t. Then r·s ≥ r·[(s ∨/· t) · t] =
= [r · (s ∨/· t)] · t, and from Proposition 2.5 we obtain (r · s) ∨/· t ≥ r · (s ∨/· t).

Proposition 2.8. For every r, s, t ∈ PR the following relations hold:

1) (r ∨/· t) ∨/· (s ∨/· t) ≥ r ∨/· s;

2) (r · t) ∨/· (s · t) ≥ r ∨/· s.

Proof. 1) From Proposition 2.5 the relation of this statement is equivalent to the
relation r ∨/· t ≥ (r ∨/· s) · (s ∨/· t).

By definition of the left quotient we have r ≥ (r ∨/· s) · s and s ≥ (s ∨/· t) · t,
therefore r ≥ (r ∨/· s) · s ≥ (r ∨/· s) · [(s ∨/· t) · t] = [(r ∨/· s) · (s ∨/· t)] · t. Applying
Proposition 2.5 we obtain r ∨/· t ≥ (r ∨/· s) · (s ∨/· t).

2) From Proposition 2.5 follows that the relation of this statement is equivalent
to r · t ≥ (r ∨/· s) · (s · t). By definition of the left quotient we have r ≥ (r ∨/· s) · s,
therefore r · t ≥ [(r ∨/· s) · s] · t = (r ∨/· s) · (s · t) .

Now we will indicate some relations between the left quotient with respect to
join and the lattice operations of PR.
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Proposition 2.9. (The distributivity of the left quotient r ∨/· s with respect to meet)
Let s ∈ PR. Then for every family of preradicals {rα|α ∈ A} the following relation
holds: (

∧
α∈A

rα

)
∨/· s = ∧

α∈A
(rα

∨/· s).

Proof. (≥) By definition rα ≥ (rα
∨/· s) · s, for every α ∈ A. Then ∧

α∈A
rα ≥

≥ ∧
α∈A

[(rα
∨/· s) · s]. From the distributivity of the product of preradicals relative to

meet it follows that ∧
α∈A

rα ≥
[
∧

α∈A
(rα

∨/· s)
]
· s. Using Proposition 2.5 we obtain

(
∧

α∈A
rα

)
∨/· s ≥ ∧

α∈A
(rα

∨/· s).

(≤) From Lemma 2.1 we have
(
∧

α∈A
rα

)
∨/· s = ∨

{
tβ ∈ PR | tβ · s ≤ ∧

α∈A
rα

}

and ∧
α∈A

(rα
∨/· s) = ∧

α∈A

(
∨

r′γ ·s≤ rα

r′γ

)
. Since tβ · s ≤ ∧

α∈A
rα ≤ rα for every α ∈ A,

we have tβ · s ≤ rα, so each preradical tβ is one of the preradicals r′γ . This implies

the relation ∨
{

tβ ∈ PR | tβ · s ≤ ∧
α∈A

rα

}
≤ ∨{r′γ ∈ PR | r′γ · s ≤ rα} for every

α ∈ A, therefore ∨
{

tβ ∈ PR | tβ · s ≤ ∧
α∈A

rα

}
≤ ∧

α∈A
(∨{r′γ ∈ PR | r′γ · s ≤ rα}),

which means that
(
∧

α∈A
rα

)
∨/· s ≤ ∧

α∈A
(rα

∨/· s).

Proposition 2.10. In the class PR the following relations are true:

1)
(
∨

α∈A
rα

)
∨/· s ≥ ∨

α∈A
(rα

∨/· s);

2) r ∨/·

(
∧

α∈A
sα

)
≥ ∨

α∈A
(r ∨/· sα);

3) r ∨/·

(
∨

α∈A
sα

)
≤ ∧

α∈A
(r ∨/· sα).

Proof. 1) By the definition of the left quotient we have rα ≥ (rα
∨/· s) · s for every

α ∈ A, therefore ∨
α∈A

rα ≥ ∨
α∈A

[(rα
∨/· s) · s]. From the distributivity of the product

of preradicals relative to join it follows that ∨
α∈A

rα ≥
[
∨

α∈A
(rα

∨/· s)
]
· s and using

Proposition 2.5 we obtain
(
∨

α∈A
rα

)
∨/· s ≥ ∨

α∈A
(rα

∨/· s).

2) For every α ∈ A we have ∧
α∈A

sα ≤ sα. From the antimonotony in

the denominator it follows that r ∨/·

(
∧

α∈A
sα

)
≥ r ∨/· sα for all α ∈ A, therefore

r ∨/·

(
∧

α∈A
sα

)
≥ ∨

α∈A
(r ∨/· sα).
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3) For every α ∈ A we have ∨
α∈A

sα ≥ sα. From the antimonotony in

the denominator it follows that r ∨/·

(
∨

α∈A
sα

)
≤ r ∨/· sα for all α ∈ A, therefore

r ∨/·

(
∨

α∈A
sα

)
≤ ∧

α∈A
(r ∨/· sα).

3 The left quotient r ∨/· s in particular cases

In this section we will show some particular cases of left quotient with respect
to join, its relations with some constructions in the ”big” lattice PR and its con-
nection with certain types of preradicals (prime, ∧-prime, irreducible ), as well as
the arrangement (relative position) of preradicals obtained by left quotient.

Proposition 3.1. For every preradicals r, s ∈ PR the following conditions are
equivalent:

1) r ≥ s;

2) r ∨/· s = 1.

Proof. 1) ⇒ 2) Let r ≥ s, then r ≥ 1 · s and from Proposition 2.5 we obtain
r ∨/· s ≥ 1, therefore r ∨/· s = 1.

2) ⇒ 1) Let r ∨/· s = 1. By the definition of the left quotient we have (r ∨/· s)·s ≤
r, so 1 · s ≤ r, i.e s ≤ r.

Proposition 3.2. Let r, s ∈ PR. Then:

1) 0 ∨/· s = a (s) (see Definition 1.1);

2) r ∨/· 1 = r.

Proof. From the definition of left quotient we have:

1) 0 ∨/· s = ∨{rα ∈ PR | rα · s ≤ 0} = ∨{rα ∈ PR | rα · s = 0} = a (s);
2) r ∨/· 1 = ∨{rα ∈ PR | rα · 1 ≤ r} = ∨{rα ∈ PR | rα ≤ r} = r.

From Propositions 3.1 and 3.2 it follows the following particular cases:

(1) 0 ∨/· 0 = a (0) = 1; (2) r ∨/· r = 1, ∀r ∈ PR;
(3) 1 ∨/· s = 1, ∀s ∈ PR; (4) 1 ∨/· 1 = 1.

As in Proposition 3.1 (r ∨/· r) · r = 1 · r = r, for every r ∈ PR.
Moreover, the distributivity of product of preradicals relative to the join implies

a (s) · s =
(

∨
rα · s =0

rα

)
· s = ∨

rα· s =0
(rα · s) = 0 for every s ∈ PR.

In continuation we will discuss the question of the relations between the annihila-
tor a (r) and some constructions in the ”big” lattice PR such as pseudocomplement
and supplement.

Proposition 3.3. For every preradical s ∈ PR we have a (s) ≥ s⊥.
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Proof. By the definition of the annihilator a (s) = ∨{rα | rα · s = 0}. The pseudo-
complement s⊥ of the preradical s, by the definition, has the property s⊥∧s = 0.
Since s⊥ · s ≤ s⊥ ∧ s = 0, we obtain s⊥ · s = 0. So s⊥ is one of the preradicals rα,
therefore s⊥ ≤ ∨{rα ∈ PR | rα · s = 0}, i.e. s⊥ ≤ a (s).

Moreover, from Proposition 2.3 we have r ∨/· s ≥ 0 ∨/· s = a (s), therefore r ∨/· s ≥
s⊥.

Proposition 3.4. Let s ∈ PR and s has the supplement s∗. Then a (s) ≤ s∗.

Proof. By definition a (s) = ∨{rα ∈ PR | rα · s = 0}. The supplement s∗ of s
from the definition has the property s∗ ∨ s = 1. Since s # s∗ ≥ s ∨ s∗ = 1, we
obtain s # s∗ = 1. We have that a (s) · s = 0, so s∗ = 0 # s∗ = (a (s) · s) # s∗.
From Lemma 1.4 (a (s) · s) # s∗ ≥ (a (s) # s∗) · (s # s∗) = (a (s) # s∗) · 1 = a (s) # s∗,
therefore s∗ ≥ a (s) # s∗. But a (s) # s∗ ≥ a (s) and so s∗ ≥ a (s).

Furtheremore, we have s∗ ≥ a (s) # s∗ and a (s) # s∗ ≥ s∗, so s∗ = a (s) # s∗.
In the next two statements it is shown when the cancellation properties hold (see

Proposition 2.6).

Proposition 3.5. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r · s) ∨/· s.
2) r = t ∨/· s for some preradical t ∈ PR.

Proof. 1) ⇒ 2) Let r = (r · s) ∨/· s. Then r = t ∨/· s with t = r · s.
2) ⇒ 1) Let r = t ∨/· s for some preradical t. By the definition of the left quotient

we have (t ∨/· s) · s ≤ t. From Proposition 2.3 we obtain [(t ∨/· s) · s] ∨/· s ≤ t ∨/· s. But
from Proposition 2.6 [(t ∨/· s) · s] ∨/· s ≥ t ∨/· s, therefore [(t ∨/· s) · s] ∨/· s = t ∨/· s. Since
t ∨/· s = r, we have (r · s) ∨/· s = r.

Proposition 3.6. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r ∨/· s) · s.
2) r = t · s for some preradical t ∈ PR.

Proof. 1) ⇒ 2) Let r = (r ∨/· s) · s. Then r = t · s with t = r ∨/· s.
2) ⇒ 1) Let r = t · s for some preradical t. By Proposition 2.6 we have

(t · s) ∨/· s ≥ t. From the monotony of the product it follows that [(t · s) ∨/· s] · s ≥
≥ t · s. But from the definition of the left quotient [(t · s) ∨/· s] · s ≤ t · s, therefore
[(t · s) ∨/· s] · s = t · s. Since t · s = r, we have (r ∨/· s) · s = r.

Now we will show the behaviour of the left quotient r ∨/· s in the cases of some
types of preradicals (prime, ∧-prime, irreducible).

Proposition 3.7. The preradical r is prime if and only if for every preradical s
we have r ∨/· s = 1 or r ∨/· s = r.
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Proof. (⇒) Let r 6= 1. By definition (r ∨/· s) · s ≤ r and if r is prime, then we
have r ∨/· s ≤ r or s ≤ r. If r ∨/· s ≤ r, then by Lemma 2.2 r ∨/· s ≥ r, therefore
r ∨/· s = r. If s ≤ r, then from Proposition 3.1 we have r ∨/· s = 1.

(⇐) Let t1 · t2 ≤ r for some preradicals t1, t2 ∈ PR. From Proposition 2.5
we obtain t1 ≤ r ∨/· t2. For the preradical t2 from the condition of this proposition
we have r ∨/· t2 = 1 or r ∨/· t2 = r. If r ∨/· t2 = 1, then from Proposition 3.1 it
follows that t2 ≤ r. If r ∨/· t2 = r, then t1 ≤ r ∨/· t2 = r. So for every t1, t2 ∈ PR
with t1 · t2 ≤ r we have t1 ≤ r or t2 ≤ r, which means that the preradical r is
prime.

Proposition 3.8. If the preradical r is ∧-prime, then the quotient r ∨/· s is
∧-prime for every s ∈ PR.

Proof. Suppose that t1∧ t2 ≤ r ∨/· s. Then from Proposition 2.5 we obtain (t1 ∧ t2) ·
s ≤ r. From the distributivity of the product of preradicals relative to meet we have
(t1 · s)∧ (t2 · s) ≤ r. If r is ∧-prime, then t1 ·s ≤ r or t2 ·s ≤ r. From Proposition
2.5 we obtain that t1 ≤ r ∨/· s or t2 ≤ r ∨/· s. So for every preradicals t1, t2 ∈ PR
with t1 ∧ t2 ≤ r ∨/· s we have t1 ≤ r ∨/· s or t2 ≤ r ∨/· s, which means that the
preradical r ∨/· s is ∧-prime.

Proposition 3.9. Let r, s ∈ PR and r = t · s for some preradical t ∈ PR. If the
preradical r is irreducible, then the preradical r ∨/· s is irreducible.

Proof. Let for some preradicals t1, t2 ∈ PR we have t1 ∧ t2 = r ∨/· s. If r = t · s
for some preradical t, then by Proposition 3.5 r = (r ∨/· s) · s, so r = (t1 ∧ t2) · s.
From the distributivity of the product of preradicals with respect to meet we obtain
r = (t1 · s) ∧ (t2 · s). If r is irreducible, then t1 · s = r or t2 · s = r.

If t1 · s = r, then from Proposition 2.5 we have t1 ≤ r ∨/· s. But t1 ≥ r ∨/· s,
because t1 ∧ t2 = r ∨/· s, therefore t1 = r ∨/· s.

If t2 · s = r, then similarly we obtain t2 = r ∨/· s.
So for every preradicals t1, t2 ∈ PR with t1 ∧ t2 = r ∨/· s we have t1 = r ∨/· s

or t2 = r ∨/· s, which means that the preradical r ∨/· s is irreducible.

The operation of the left quotient r ∨/· s implies the following arrangement of
associated preradicals.

Proposition 3.10. For every r, s, t ∈ PR the following relations are true:
1) r ∨/· s = (r ∧ s) ∨/· s;

2) (r ∨/· s) · s ≤ r ∧ s.

Proof. 1) From Proposition 2.9 we have (r ∧ s) ∨/· s = (r ∨/· s)∧(s ∨/· s), but s ∨/· s = 1,
so (r ∧ s) ∨/· s = (r ∨/· s) ∧ 1 = r ∨/· s.

Moreover, since r · s ≤ r ∧ s, from Proposition 2.3 we obtain
(r · s) ∨/· s ≤ (r ∧ s) ∨/· s = r ∨/· s.

2) By 1) we have r ∨/· s = (r ∧ s) ∨/· s and from the monotony of the product of
preradicals we obtain (r ∨/· s) · s = ((r ∧ s) ∨/· s) · s. From the definition of the left
quotient we have ((r ∧ s) ∨/· s) · s ≤ r ∧ s, therefore (r ∨/· s) · s ≤ r ∧ s.
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Corollary 3.11. 1) For every preradicals r, s ∈ PR the following relations hold:
r · s ≤ (r ∨/· s) · s ≤ r ∧ s ≤ r ≤ (r · s) ∨/· s ≤ r ∨/· s;

2) If r is a pretorsion, then
r · s = (r ∨/· s) · s = r ∧ s ≤ r ≤ (r · s) ∨/· s = r ∨/· s

for every s ∈ PR. ¤

In conclusion we can say that in the class PR of the category R-Mod there
is defined a new operation - left quotient with respect to join, which possesses a
series of properties connected with the four operations of the class PR. This new
operation is concordant with a series of notions from the theory of radicals.
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