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1. INTRODUCTION 
 

In previous papers some problems of non-
Newtonian fluid flow in the channels were solved. 
The two classes of liquids were considered: 
Bingham fluid and the generalized shear. A special 
case of the latter is the power fluid. Heat transfer in 
channels with the environment is considered in two 
cases. In the first case the external environment is 
an infinite heat reservoir with a given temperature. 
In the second case, the role of the environment 
performs a channel in which the coolant moves. In 
the second case, the temperature of the coolant can 
not be given, it varies along the length of the 
channel. The equations of heat transfer contain 
convection terms and the terms of the thermal 
conductivity.  

 
 

2. RECENT INVESTIGATIONS 
 
As shown in previous studies heat transfer in 

a channel with non-Newtonian fluid occurs at small 
values of the Peclet number; despite the fact that 
Bingham and the generalized shear liquids have 
higher viscosity. The movement of fluid in the 
channel is considered inertial and also corresponds 
to small values of Peclet number. Thus, in the 
hydrodynamic aspect the non-Newtonian fluid and 
coolant are moving in different modes, where in the 
thermal aspect they are moving in the same mode.  

 
 

3. RESULTS OF RESEARCH 
 
The heat transfer scheme for Bingham fluid 

flow in the channel that is immersed in a thermal 
reservoir is shown on Fig. 1 a and b.  

The heat transfer scheme of generalized shear 
fluid in the channel that is immersed in a thermal 
reservoir, is shown on Fig. 2 a, b. For the case of 
thermal interaction of non-Newtonian fluid in the 
channel with the coolant in another channel, the 
corresponding images are shown on Fig. 3, Fig. 4a 

 

 
Figure 1. Bingham fluid: a – view in dimensional 
space; b – scheme of flow and characteristics of 

heat transfer with heat reservoir. 
 

and b, Fig. 5 a and b. From Fig. 3 follows that we 
consider the general case such that the coolant 
channel is pushing at an angle to the channel with 
non-Newtonian fluid.  
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a. 

 
Figure 2. Generalized-shear fluid: a – view in 

dimensional space; b – scheme of flow and 
characteristics of heat transfer with heat reservoir 

 
For this reason, two different interrelated 

longitudinal coordinate z and z1 should be given. 
Then coordinate measured along the axis of the 
channel with non-Newtonian fluid is used as the 
longitudinal coordinate z, while the coordinate z1 is 
attributed to wrapping channel with coolant. If the 
ascent angle of the wrapping channel is equal to 
zero, it means that both channels interact in forward 
flow or counter flow way. If the ascent angle of the 
wrapping channel is equal to π/2, then the two 
channels interact in cross flow way. When 
describing the heat exchange with generalized shear 
fluid the four heat-transfer coefficients (see Fig. 2b) 
for the thermal reservoir, and eight heat transfer 
coefficients for the wrapping channel with coolant 
(see Fig. 5b) should be used.  

When describing the heat transfer with 
Bingham fluid the six heat-transfer coefficients for 

heat reservoir and ten heat transfer coefficients for 
the wrapping channel with coolant (see Fig. 1b and 
4b) should be used. During the heat transfer in the 
core of Bingham fluid the heat is transported 
according to the heat conduction mechanism.  

 
 

Figure 3. Schematic representation of relative 
disposition of direct and wrapping channel 

 
For Bingham fluid heat transfer in a channel 

with a wall with a given temperature the following 
equations are performed: 
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Where: ±V  – the expenses of the fluid flow 
above and below the core flow, m3/sec; ρ – density 
of the Bingham fluid, kg/m3; cp – heat capacity of 
the Bingham fluid, J/kg·deg; T± – the temperature of 
streaming portion above and below the core flow, 
deg; ±e  – specific dissociations of energy of the 
fluid above and below the core flow, J/m3; s± – 
cross-sectional areas of the fluid above and below 
the core flow, m2; ±

hT  – temperatures of higher and 

lower walls, deg; ±
iα  – the heat transfer 

coefficients on the walls at lines y = ±h, 
J/m2·sec·deg; ±

kα  – heat transfer coefficients at the 
boundaries of the core flow on the lines y = G±, 
J/m2·sec·deg; p± – perimeters of channel  
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a. 

 
Figure 4. Bingham fluid: a – view in dimensional 

section of direct and wrapping channel; b – scheme 
of flow and characteristics of heat transfer with 

heat reservoir. 
 

cross section walls, m; ±
kp – perimeters of 

boundaries of the core flow, m;λ, λk – thermal 
conductivity coefficients of streaming portion and 
Bingham fluid core, respectively, J/m·sec·deg. 

If temperatures of the channel walls are 
known (which happens often), the heat transfer 
equations take the following form: 
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Figure 5. Generalized-shear fluid: a – view in 
dimensional section of direct and wrapping 

channel; b – scheme of flow and characteristics of 
heat transfer with heat reservoir. 

 
Where: T±∞ – temperatures of heat reservoir 

above and below the channel, deg; K± – heat 
transfer coefficients between parts of the heat 
reservoir and the streaming portion of the Bingham 
fluid above and below the core flow, J/m sec deg; 

±
kK  – heat transfer coefficients between the 

streaming portion and the core of Bingham fluid, 
J/m2·sec·deg. The heat transfer coefficients are 
based on heat removal coefficients according to the 
usual rules. 

The equation of heat transfer in a channel of 
generalized shear fluid with the specified wall 
temperatures has the following form: 
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Where the meaning of all symbols is the 

same as in (1) and (2); except for the absence of 
difference between higher and lower flows in 
relation to the core flow. 

The equation of heat transfer in a channel 
with a thermal reservoir can be represented as 
follows: 
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The record of the equations of heat transfer 

with the given wall temperatures for the flow of 
Bingham fluid in a rectangular channel should 
consider the partition of channel cross-section. 
Moreover, the number of heat transfer coefficients 
is doubled. In the longitudinal and transverse flow 
the partition for the longitudinal part of the flow and 
partitioning of the transverse part of the flow may 
not coincide. 

The equations of heat transfer for the flow of 
Bingham fluid in a rectangular channel with the 
given wall temperatures have the following form: 
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The equations of heat transfer for the flow of 

Bingham fluid in a heat reservoir with the given 
wall temperatures have the following form: 
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The heat transfer of generalized shear fluid in 
a rectangular channel with the given wall 
temperatures is represented by the following 
equations: 
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Equations (7) in case of submerging into the 
a heat reservoir have the following form: 
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Equations (2), (4), (6), (8), in case where a 
flat or rectangular channel is covered with wrapping 
channel, in which a liquid coolant flows, should be 
supplemented by equations for heat reservoir 
temperature variations. In order not to rewrite all 
the equations anew, we can consider only the 
equations of heat transfer for the thermal reservoir. 
These equations are as follows: 
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For flat channel with Bingham fluid. In these 

equations ±
eT  shows the temperature of the channel 

with coolant, deg; index “ee” mean the environment 
external in relation to the channel with coolant. 
Temperatures ±

eT  in case of heat reservoir with 
fixed temperatures gain the values of T±∞. The the 
rectangular channel the number of (9) equations is 
doubled; and all the values that are contained in 
these equations should be supplemented with 
indexes x and y. For the generalized shear fluid the 
same should be done. Variables z and ze as well as 
the relation between them will be discussed later. If 
a channel with a very viscous liquid is surrounded 
by a wrapping channel, then both for the Bingham 
fluid and for the generalized shear fluid the single 
Te(z1) temperature will be instead of the individual 
temperatures ±

eT . But this single temperature will 
be taken in the different points along the z1 
coordinate. The detailed construction will be 
performed below. 

The form of equations (1) ÷ (9) shows that 
the longitudinal temperature field can be set by the 
following sequence of actions: calculate the values 
of specific dissipations, build line borders of 
rectangle partition in the section of the channel, 
calculate the subdomains areas, calculate integrals 
of the specific dissipation of subdomains; calculate 
the heat transfer coefficients on the solid walls and 
boundaries (for Bingham fluid), construct the heat 
transfer coefficients, and solve the problem of heat 
conduction in the core of Bingham fluid. 

All these questions are consistently described 
below, but before examining them it is important to 
derive the equations of heat transfer for an 
arbitrarily oriented heat transfer direction in relation 
to the main channel.  

This situation is realized during the heat 
transfer between the direct channel and the channel 
that is wrapping the direct channel with an arbitrary 
ascent angle of its axis’s helix line. The longitudinal 
coordinates z and ze of the wrapping channel and 
the main channel do not coincide. The relationship 
between these coordinates is established through the 
ascent angle φ and has the following form: 

 

ϕ21 tgzze += .                     (10) 
 
If the specific cross-section is selected in the 

direct channel, then the opposite sides of this 
section will correspond to the different cross-
sections of the wrapping channel, which are 
arranged one after another and fill some gap along 
ze coordinate. For each set of sections of the 
wrapping channel which are related to the one side 
of the direct channel’s cross-section, the average (in 
terms of its location) section can be specified. This 
average section is related to some definite 
coordinate ze. If this procedure is repeated for all 
sides of the main channel’s cross-section, then the 
rectangular cross-section of the direct channel will 
be surrounded by the cross-section of the channel 
with temperature Te taken at four different points 
along the coordinate ze. Arguments zei for 
temperature Te take the following values: 
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ϕξ 21 tg+≡ , 
where: a, h, δ – dimensions of cross-section 
rectangle of the direct channel and width of 
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wrapping channel, respectively, m. The heat 
transfer between generalized-shear fluid and coolant 
in flat channel can be taken as an example of heat 
transfer equations. This simplest case demonstrates 
all the basic features of the cross-precise heat 
transfer. In this case, the equations have a complex 
form: 
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where: Tiee – temperatures of the environment which 
surrounds the wrapping channel, deg. The second 
equation in (12) retains its form for both 
generalized-shear fluid and Bingham fluid in direct 
channel. Addition of equations (1) ÷ (9) to this 
equation.  

 
 

4. CONCLUSIONS 
 
It follows that the heat transfer equation for a 

system of "direct channel plus wrapping channel" 
is a system of differential equations in finite 
differences. And this is their main difference from 
the corresponding equations for the cases of fixed 
temperatures on the walls of direct channel and the 
cases of direct channel immersion in the heat 
reservoir with fixed temperature. 
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