First integrals with polynomials not higher than second order of the mathematical model of the intrinsic transmission dynamics of tuberculosis

Natalia Neagu, Mihail Popa, Victor Orlov

Abstract

For the mathematical model of the intrinsic transmission dynamics of tuberculosis (TB) all first integrals with polynomials not higher than second order were found.

Keywords: tuberculosis, Lie algebra, first integral.

Consider three-dimensional autonomic real differential system which simulates the intrinsic transmission dynamics of tuberculosis [1], [2]

$$
\begin{align*}
& \frac{d S}{d t}=\tau-\mu S-\beta S T, \quad \frac{d L}{d t}=-\delta L-\mu L+(1-p) \beta S T \\
& \frac{d T}{d t}=\delta L-(\mu+\nu) T+p \beta S T . \tag{1}
\end{align*}
$$

The parameters of the system (1) are described in Table 1 (see page 258).

According to [3] we obtain
Theorem 1. The system (1) admits the noncommutative Lie algebra of operators of the form

$$
\begin{align*}
X_{1}= & S \frac{\partial}{\partial S}+L \frac{\partial}{\partial L}+T \frac{\partial}{\partial T}+D_{1}, \quad X_{2}=\left(-\frac{\tau}{\beta}-\frac{\nu}{\beta} S+S T\right) \frac{\partial}{\partial S}+ \\
& +\left[\frac{\delta-\nu}{\beta} L+(p-1) S T\right] \frac{\partial}{\partial L}-\left(\frac{\delta}{\beta} L+p S T\right) \frac{\partial}{\partial T}+D_{2}, \tag{2}
\end{align*}
$$

© 2014 by N. Neagu, M. Popa, V. Orlov
where

$$
\begin{equation*}
D_{1}=-\beta \frac{\partial}{\partial \beta}+\tau \frac{\partial}{\partial \tau}, \quad D_{2}=(\mu+\nu) \frac{\partial}{\partial \beta}-\frac{\tau}{\beta}(\mu+\nu) \frac{\partial}{\partial \tau} \tag{3}
\end{equation*}
$$

and the structural equation is $\left[X_{1}, X_{2}\right]=X_{2}$.

Table 1. Variables and parameters of the sistem (1)

Value	Description
$S(t)$	number of sensible persons in the moment t
$L(t)$	number of infected persons in the moment t
$T(t)$	number of infectious persons in the moment t
$\beta T(t)$	force of infection per capita in the moment t
τ	influx of young people
μ	average mortality from causes not related to TB
p	probability of rapid progression of the disease
δ	constant of speed of reactivation of TB infection
ν	additional mortality caused by active TB
β	transfer coefficient of TB infection

Note that the expressions

$$
\begin{equation*}
U_{1}=\beta \tau, \quad U_{2}=\mu, \quad U_{3}=\nu, \quad U_{4}=\delta, \quad U_{5}=p, \tag{4}
\end{equation*}
$$

are invariants of the system (1) with respect to the operators (2)-(3), i.e. $D_{1}\left(U_{i}\right)=D_{2}\left(U_{i}\right)=0(i=\overline{1,5})$.

Further we assume that $U_{i}(i=\overline{1,4})$ from (4) do not vanish. This guarantees us the existence of the quadratic part $S T$ and of the free term τ in the system (1). The condition $\mu \nu \delta \neq 0$ arises from the medical sense of the parameters.

We determine the coordinates of the vector $(\tau, \beta, \mu, \delta, \nu, p)$ which contain the parameters of the system (1) when the invariants $U_{i}(i=$ $\overline{1,4})$ (see (4)) are different from zero and first integral has the form

$$
\begin{equation*}
I_{q}(S, L, T, t)=P_{q}(S, L, T) \exp (\lambda t)(q \leq 2) \tag{5}
\end{equation*}
$$

First integrals with polynomials not higher than second order
Assume that

$$
\begin{align*}
P_{q}(S, L, T)= & a+b S+c L+d T+e S^{2}+f L^{2}+g T^{2}+ \\
& +2 h S L+2 k S T+2 l L T . \tag{6}
\end{align*}
$$

The coefficients of the polynomial (6) and the parameter λ are real unknown. From $\frac{d I_{q}}{d t} \equiv 0(q \leq 2)$ using the relations (5)-(6) under system (1) we obtain the following system of polynomial equations:

$$
\begin{gather*}
\lambda a+\tau b=0,2 \tau e+(\lambda-\mu) b=0,2 \tau h-\mu c+\delta(d-c)+\lambda c=0, \\
2 \tau k+(\lambda-\mu-\nu) d=0,(\lambda-2 \mu) e=0,-2 \mu f+2 \delta(l-f)+\lambda f=0, \\
(\lambda-2 \mu-2 \nu) g=0,2 \mu h+\delta(h-k)-\lambda h=0,(2 \mu+\nu) l-\delta(g-l)-\lambda l=0, \\
\beta(-b+c-c p+d p)+2(\lambda-2 \mu-\nu) k=0, \beta(e-h+h p-k p)=0, \\
\beta(k-l-g p+l p)=0, \beta(f-h-f p+l p)=0 . \tag{7}
\end{gather*}
$$

Consequently we arrive at the next result
Theorem 2. Assume that the conditions $U_{1} U_{2} U_{3} U_{4} \neq 0$ and $0 \leq U_{5} \leq 1$ hold. Then the system (1) possessing the vector $(\tau, \beta, \mu, \delta, \nu, p)$ has 5 first integrals of the form (5)-(6) (see Table 2).

Table 2. First integrals of the sistem (1)

$(\boldsymbol{\tau}, \boldsymbol{\beta}, \boldsymbol{\mu}, \boldsymbol{\delta}, \boldsymbol{\nu}, \boldsymbol{p})$	First integral
$(\tau, \beta, \mu, p \nu, \nu, p)$	$I_{1}^{(1)}=\left(L+\frac{p-1}{p} T\right) \exp (t(\mu+\nu))$
$(\tau, \beta, \mu, \delta, \nu, 1)$	$I_{1}^{(2)}=L \exp (t(\delta+\mu))$
$(\tau, \beta, \mu,-\mu, \nu, 1)$	$I_{2}^{(1)}=a+L(c+f L)$
$(\tau, \beta, \mu,-p \mu,-\mu, p)$	$I_{2}^{(2)}=a+\left(L+\frac{p-1}{p} T\right)\left(c+f\left(L+\frac{p-1}{p} T\right)\right)$
	$I_{2}^{(3)}=\left(\left(\nu^{2}-\mu^{2}\right)\left((L+S)^{2}+2 T(L+S)\right) /(2 \mu \tau)+\right.$
$\left(\tau, \frac{\mu\left(\nu^{2}-\mu^{2}\right)}{\nu \tau}, \mu,-\nu, \nu, 0\right)$	$\quad(L+S+T)+T \nu / \mu-S \nu^{2} / \mu^{2}-$
	$\left.-\tau /(2 \mu)+\nu^{2} \tau /\left(2 \mu^{3}\right)\right) \exp (2 t \mu)$

References

[1] S.M. Blower, A.R. McLean, T.C. Porco, P.M. Small, P.C. Hopewell, M.A. Sanchez, A.R. Moss. The intrinsic transmission dynamics of tuberculosis epidemics. Nature Medicine, 1(8), 1995, pp. 815-821.
[2] K.K. Avilov, A.A. Romaniuha. Matematicheskie modeli rasprostraneniia i kontrolia tuberkuleza. Matematicheskaia Biologia i Bioinformatika, 2(2), 2007, pp. 188-318, (in Russian).
[3] N.N. Gherştega, M.N. Popa. Lie algebras of the operators and three-dimensional polynomial differential systems, Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2(48), 2005, pp. 51-64.

Natalia Neagu ${ }^{1}$, Mihail Popa ${ }^{2}$, Victor Orlov ${ }^{2,3}$
${ }^{1}$ Ion Creangă State Pedagogical University
Email: neagu_natusik@mail.ru
${ }^{2}$ Institute of Mathematics and Computer Science
Email: mihailpomd@gmail.com
${ }^{3}$ Technical University of Moldova
Email: orlovictor@gmail.com

