Computer Science Journal of Moldova, vol.15, no.3(45), 2007

Arch-pattern based design and aspect-oriented
implementation of Readers-Writers concurrent
problem

Dumitru Ciorba, Victor Begliu,
Anthony Chronopoulos, Andrei Pogtaru

Abstract

The classical problems of concurrent programming start from
the design problems of operating systems in the 80-s. But today
there are still proposed new solutions for these problems with the
help of various design and programming approaches. The present
article describes a solution which was designed according to some
new object-oriented principles, based on design patterns and pro-
poses two program solutions: firstly — an object-oriented imple-
mentation in Java language, the secondly — an aspect-oriented
one in AspectJ language.

Key words: concurrency, design arch-pattern, aspect, Java,
Aspectd.

1 A new solution?

Concurrent programming is the science determined by the art of or-
ganizing cooperation. Most of the times, this art implies using some
programming techniques developed on certain technological support.
In other words, if one has at his disposal object-oriented languages,
the problems of concurrency should be approached only in an object-
oriented context.

The implementation of concurrency by object based techniques is
accompanied by a number of difficulties generically described as inheri-
tance anomalies. Understanding them by means of numerous classifica-
tion attempts [1, 2] helps to determine the causes of this phenomenon.

(©2007 by D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

338

Arch-pattern based design and aspect-oriented implementation of ...

This means that organizing the cooperation (implemented with class
methods) cannot be inherited by subclasses without explicit modifica-
tions.

At the same time, classical approaches of generalization and mod-
ularity subjected to the dominant decomposition tyranny [3, 4] cannot
be used for determining specific properties of concurrent systems, such
as synchronization, resource allocation, security, persistence, etc.

Thus, our task is to propose a new solution for the classical Readers-
Writers problem based on flexible techniques of organizing concurrent
activities deprived of inheritance anomalies and with no scattering of
the non-functional requirements’ code in the entire system.

2 Formulating the problem

The Readers-Writers problem is a modification of the problem of mu-
tual exclusion. It implies the existence of some readers that may have
simultaneous access to a book (critical section) and of some writers,
who have an exclusive access to it.

The policies of synchronization and access scheduling determine the
existence of several problem versions. However, we will agree with the
formulation described in [5] (also proposed in [6]), that associates an
executed concurrent process to each reader and each writer. Their
activities will consist of opening and closing the book.

One should distinguish between the operations executed by readers
and the ones executed by writers. When we plan access we make the
following assumptions:

a) If none of the processes has entered the critical section (did not
open the book) and there are readers and writers who wish to do
so, a writer will be chosen;

b) If a writer exited the critical section (closed the book), and there

are readers and writers who wish to enter the critical section,
readers will be chosen.

339

D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

3 Functional and non-functional requirements
of the problem

Identifying requirements is a necessary process that results in a spec-
ification, determined by the vision of the users on the system. The
analysis of the requirements obtained implies creating a new model
that developers will be able to interpret in a non-trivial way. Oun the
initial stages this fact will ensure a decomposition that will propose a
code that would not be either entangled or scattered [7] by dividing all
the functional and non-functional requirements into modules.

Functional requirements determine the behavior of the system, in
terms of the services it supplies. The non-functional requirements im-
pose some restrictions onto these services that may affect the perfor-
mance and the semantics of the system. By employing Use Cases (the
Use Cases describe a system’s functionality), UML allows to specify
functional requirements (Tables 1 and 2 display their partial defini-
tion), and also to offer a possibility to identify some scattered restric-
tions, that must be placed in separate language structures.

Table 1. Use case Open (Reader actor)

Use Case Open

Actor Reader

Pre-condition No writer writes in the book (synchronization)
Incrementing the number of active readers
(synchronization)

No writer is waiting to write (scheduling)

Post- condition

Basic scenario A writer will open the book for reading that
may be performed simultaneously by several
readers.

In Figure 1 one can see the use case diagram for the Readers-Writers

340

Arch-pattern based design and aspect-oriented implementation of ...

Table 2. Use case Close (Reader actor)

Use Case

Close

Actor

Reader

Pre-condition

Post- condition

Decrementing the number of the active readers
(synchronization)

Will offer the writers the first chance of open-
ing, if there are no active readers (scheduling)

Basic scenario

The Reader closes the book

Table 3. Use case Open (Writer actor)

Use Case Open

Actor Writer

Pre-condition No writer is writing in the book (synchroniza-
tion)

There is no active readers (scheduling)

The first chance for opening will be offered to
the writers who expressed their wish to open
the book before any reader did (scheduling)
Incrementing the number of active writers
(synchronization)

Post- condition

Basic scenario

The writer will open the book which can be
read by only one writer

341

D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

Table 4. Use case Close (Writer actor)

Use case

Close

Actor

Writer

Pre-condition

Post- condition

A first chance to open wil

Decrementing the number
(synchronization)

1 be offered to the

readers who expressed a wish to open the book
before the writers did (scheduling)

of active readers

Basic scenario

A writer will close the book that may be read
by several readers or written by one author.

Scheduling

Book jritiea! seclion)

Open
AR
ncex‘l’endn «exﬁndx

Read

...........................

'
'
T
L
Exelusive accesslj

Multi access IT

Synchmonization

Writer

Figure 1. Use case diagram for the Readers-Writers problem

342

Arch-pattern based design and aspect-oriented implementation of ...

problem. It can be noticed that certain requirements (like Synchroniza-
tion and Scheduling) expressed by pre-conditions or post-conditions are
scattered (implemented in several use cases).

4 The StrategyProxy — design arch-pattern

Creating systems designs that correspond to reusability principle when
there are concurrent activities is a difficult task because one must ob-
tain a specific solution for the problem which can be reused.

Design patterns are a way for finding such solutions. Many works,
as [8] and [9], confirm this fact presenting a number of design patterns,
which can be accepted for describing abstract interactions between the
system objects. The design patterns described in [9] have aroused
considerable interest. They are based on primitives of Java language
and intended for concurrent design.

The advantage gained by use of design patterns is obvious because
using them enhance reusability of tested and successful solutions, and
saves development time. We can add here that systems can easily be
described using patterns because they are directly determining the use
cases. Still, the use of patterns remains unsystematic and must be
improved.

The fact that, when looking for a solution of a problem, the patterns
describe the elements (classes and objects) and the interactions between
them [8], allows us to consider them also architectural patterns, even
if they determine micro-architectures [11].

The presented design method, in contrast to many existing, is an
inductive one in which the design of the architecture comes at the
“unification” of the components, which can be classes or design pat-
terns from a specific catalog. The synthesis is realized through con-
nectors which can be classes (objects) shared by two or more patterns,
or can just not exist if there can be established a direct relationship
between the classes (objects) of the unified patterns. The result of the
synthesis is a super-structure of design patterns which define a micro-
architecture. This is why the structure has been named arch-pattern
in order to avoid the eventual confusion with the architectural pattern

343

D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

term, which describes the system on a more abstract level [12].
The analysis of Readers-Writers problem has resulted in a class
model named StrategyProxy which should be used when:

a) We need an intermediary which will represent and manage access
to an object,

b) The object that is called may be in a different address space than
the one of the clients,

c¢) Clients can have different access rights,

d) Clients can have different behavior, defined independently of
them.

The motivations for this class model combine those of the Strategy and
Prozy design patterns from [8]. That’s why, for better understanding, it
was decided that its name should combine the names of the above pat-
terns and StrategyProxzy should be identified as a design arch-pattern
(Figure 2).

wthreads winterfaces wthreads
Reader EooidlF Wiriter

e 2 woid

+ Close) woid

75

Eook Strate guPros
+ Openiy:wid + Open):wid
+ Clossiweid + Cloze):void
+ Read():woid
+ Wibite() : woid Zr
|'\\ I 1 P
publicvoid Opency { ReadStrategy Wirite Strateqy public void Opengy
m_Baok.Openi); + Opent):weid + Open(:woid b R m_Book.DpenO:
m_Book Readi); + Oosa:wid + Oose(:wid m_Book.liite (),
CheckReadAuailabiling) @ wid - Checliifite Availabil ity void
CearReaderPreseneel) : woid - OeariiterPresncear) : woid H

Figure 2. Design arch-pattern StrategyProry applied to the Readers-
Writers problem

344

Arch-pattern based design and aspect-oriented implementation of ...

At this point the design arch-pattern can already provide some in-
formation regarding the inheritance anomalies, and an object-oriented
implementation can underline that.

5 Object-oriented implementation of the prob-
lem in Java

The active entities (Reader and Writer threads) of the concurrent sys-
tem will call Open and Close methods (Figure 3) applied on the object
defined by the BookIF interface, but will realize the tasks with their
own strategies (Figure 5).

public class Reader extends Thread{

public int Id;

public BookIF m_Book;

public Reader(int 1d, BooklF ReadStrategy){
this. Id = Id;
m_Book = ReadStrategy;

}

public void run(){
m_Book.Open();
m_Book.Close();

Figure 3. Java implementation of Reader class

The StrategyProxy element from Figure 2 will be implemented as
an abstract class (Figure 4) which will include the static variables ac-
tiveReaders, waitingReaders, active Writers, waiting Writers and prefer-
Wrriters for the common access policy and will define a Book interface
for the ReadStrategy (Figure 5) and WriteStrategy strategies.

345

D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

public abstract class StrategyProzy implements BookIF' {
public static Book m_Book;
protected static int activeReaders = 0;
protected static int waitingReaders = 0;
protected static int active Writers = 0;
protected static int waiting Writers = 0;
protected static boolean prefer Writers = true;
static{
m_Book = new Book();
}

public synchronized void Open(){ }
public synchronized void Close(){ }

Figure 4. Java implementation of StrategyProxy class

The ReadStrategy class will implement the access policies of the Readers
described in the pre-conditions and the post-conditions of the use cases
using CheckReadAvailability() and ClearReaderPresence().

The pass-through condition [while (active Writers != 0 || (waiting-
Writers 1= 0 €€ prefer Writers))] from ReadStrategy. CheckReadAvai-
lability() is determined by the formulation of the problem which denies
the access to the Book if there are active Writers (active Writers !=
0) or there are waiting Writers (waiting Writers != 0) who have an-
nounced their wish to access the book earlier or are preferred (prefer-
Writers=true).

The waking of the suspended threads from ReadStrategy. ClearRea-
derPresence() is conditioned by the fact that all the threads of the
Readers must end their activity. This will allow all new Readers to ac-
cess the book independently of the number of suspended Writers (they
cannot modify the value of the prefer Writers variable in WriteStrat-
egy. CheckReadAwvailability()). The condition [if(waitingReaders==0)
preferWriters = true] is necessary only to prevent the halting of the
last thread of the Writers and not for implementation of the access
policies to Book.

346

Arch-pattern based design and aspect-oriented implementation of ...

public class ReadStrategy extends StrategyProzy {
int Id;
public ReadStrategy(int Id){
this.Id = Id;
}

public synchronized void Open(){
CheckReadAvailability();
m_Book.Open(); // Common for read/write operation
m_Book.Read(); // Read operation
¥
public synchronized void Close(){
m_Book.Close();
ClearReaderPresence();
}
private void CheckReadAvailability(){
waitingReaders++;
while (active Writers != 0 ||
(waitingWriters = 0 &6 prefer Writers) {
synchronized(m_Book)

{
¥

try{ m_Book.wait(); } catch(Ezception ex) {}

}

waitingReaders—; activeReaders++;
synchronized(m_Book)

{

notifyAll(); // anounce All waiting readers

}
private void ClearReaderPresence(){
activeReaders—;
if(activeReaders == 0) {
if(waitingReaders==0) prefer Writers = true;
synchronized(m_Book)

347

D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

m_Book.notifyAll();

Figure 5. Java implementation of ReadStrategy class

The major inconveniency of this solution consists in the necessity to
redefine the entire method if a derived class from ReadStrategy wishes
to change the synchronization behavior of Open and Close methods.

6 Aspect-Oriented implementation of the prob-
lem in AspectdJ

After the analysis of design patterns presented in [8] and [9] it was dis-
covered that there are no solutions for the description of the interactions
between the functional and non-functional code. The aspect-oriented
approach offers such a possibility and allows us to localize the scattering
of the requirements in separate constructive units named aspects.

In the problem Readers-Writers, the non-functional requirements
such as, the synchronization, scheduling, multiple and exclusive access
(Figure 1) are implemented mandatory as an aspect. This will allow
an anomaly-less inheritance of the classes that realize the functional
requirements. Moreover, the weaving mechanisms [3, 10] of aspects
with classes allow us to simplify the system development, eliminating
the classes of the strategies for the Readers and the Writers (Figure 2).

The description of the specific behavior of Readers and Writers and
the identification of these will be implemented by means of special as-
pect constructions pointcut and advice of the AspectJ language (Figure
6).

348

Arch-pattern based design and aspect-oriented implementation of ...

public aspect StrategyAspect{
protected int activeReaders = 0;
protected int waitingReaders = 0;
protected int active Writers = 0;
protected int waiting Writers = 0;
protected boolean prefer Writers = true;
pointcut ReaderOpen(Reader reader, Proxy proxy): call(* *.Open())
&€ this(reader) &6 target(prozy);
pointcut ReaderClose(Reader reader, Proxy proxy): call(* *.Close())
&€ this(reader) &6 target(prozy);
pointcut WriterOpen(Writer writer, Prozy proxy): call(* *.Open())
&€ this(writer) &€ target(prozy);
pointcut WriterClose(Writer writer, Prozy prozy): call(* *.Close())
669 this(writer) €€ target(prozy);
before(Reader reader, Proxzy prozy):ReaderOpen(reader, prozy){
waitingReaders++;
while (active Writers != 0 ||(waitingWriters != 0 &€ prefer Writers)){
synchronized(prozy.m_Book)

{
¥

try{ prozy.m_Book.wait(); }catch(Exzception ex){}

}

waitingReaders—; activeReaders++;
¥
after(Reader reader, Prozy prozy):ReaderOpen(reader, prozy){
synchronized(proxy.m_Book){
prozy.m_Book.Read();

}
}

after(Reader reader, Prozy proxzy):ReaderClose(reader, prozy){
activeReaders—;
if(activeReaders == 0) {

349

D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

if(waitingReaders)prefer Writers = true;
synchronized(prozy.m_Book)

{
¥

prozy.m_Book.notify All();

}
}

before(Writer writer, Prozy prozy): Writer Open(writer, prozy){
waiting Writers++;
while(active Writers == 1 || activeReaders !=0 || !prefer Writers){
if(activeReaders = 0) prefer Writers = true;
synchronized(prozy.m_Book)

{
1

try {prozy.m_Book.wait();} catch(Ezception e){}

}

waitingWriters—; active Writers++;
¥
after(Writer writer, Prozy prozy): Writer Open(writer, prozy){
synchronized(proxy.m_Book){
prozy.m_Book. Write();

}
}

after(Writer writer, Proxzy prozy): Writer Open(writer, prozy){
active Writers—;
if(waitingReaders != 0) preferWriters = false;
synchronized(proxy.m_Book)
{ prozy.m_Book.notify All(); }

}
}

Figure 6. StrategyAspect aspect

350

Arch-pattern based design and aspect-oriented implementation of ...

For the Reader objects the access policies to the Book will be imple-
mented in the advice before(Reader reader, Proxy proxy): ReaderOpen(
reader, prozy) run in the moment specified by the pointcut ReaderOpen.
This is defined by the pointcut ReaderOpen(Reader reader, Proxy
prozy): call(* *.Open()) €& this(reader) &€ target(prory), identifies
the call of Open() of the Prozy type object (identified by target) in one
of the Reader objects (identified by this) (Figure 7).

X O O

Reader Progy Boak

Before E i i
Cpen() call i . L] -]
b Open i

B efore [;
Closel) call
§ il

Figure 7. The interaction of the Reader-Prozy-Book objects

As a result of weaving the aspect StrategyAspect with the base classes
we will obtain Java compatible classes. This is due to the AJDT plug-in
(Aspect] Development Tools) of the Eclipse IDE.

Conclusions

We studied the problem of aspect-oriented implementation of
Readers-Writers concurrent problem. Identification of functional and
non-functional requirements right from the beginning of the develop-
ment can offer a chance for modularity free of the tyranny of dominant
decomposition and reusability anomalies.

351

D. Ciorba, V. Begliu, A. Chronopoulos, A. Pogtaru

We proposed the arch-pattern design for the Readers-Writers prob-

lem which offers a certain flexibility in description of client behavior,
but is not enough for reaching the primary goal: separating the non-
functional requirements in independent units.

The aspect-oriented approach and the new arch-pattern design have

the advantage that they offer more generic mechanisms for describing
interactions between objects, in comparison to patterns described in
a strictly object-oriented context. But the implementation of this for
aspect-oriented programming is not a proper solution because the prin-
ciple of reusability cannot be guaranteed for aspects.

References

[1]

2]

[3]

[4]

[5]

[6]
7]

D. M. Suciu. Tehnici de implementare a concurentei in analiza g1
proiectarea orientatd pe obiecte, Teza de doctorat, Universitatea
”Babeg - Bolyai”, Cluj-Napoca, 2001.

S. Matsuoka, A. Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages, In Research
Directions in Concurrent Object-Oriented Programming,1993.

Besliu V., Ciorba D. , Chronopoulos A., The aspect-oriented de-
velopment of concurrent systems, In proceedings of ICMCS, UTM,
Chiginau, 2005, Vol. 2, pp. 260-265.

C. A. Constantinides, T. Elrad. On the Requirements for Con-
current Software Architectures to Support Advanced Separation of
Concerns, OOPSLA, Workshop on Advanced Separation of Con-
cerns, 2000.

H. Georgescu. Programare concurenta. Teorie si aplicatii, Editura
Tehnica, Bucuregti, 1996.

St. J. Hartley. Concurrent Programming Using Java,
http://www.mcs.drexel.edu/ shartley/ConcProgJava/.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, Cr. Lopes,
J.M. Loingtier, J. Irwin. Aspect-Oriented Programming, In Pro-
ceedings of ECOOP, 1997.

352

Arch-pattern based design and aspect-oriented implementation of ...

(8]
[9]

[10]

[11]

[12]

A. Gamma, R. Helm, H. Johnson, J.Vlissides. Methods of object
oriented design. Design patterns. St.-Petersb., 1997.

D. Lea. Concurrent programming in Java. Design principles and
patterns, http://gee.cs.oswego.edu/dl/cpj/, 2000.

The AspectJTM &5 Development Kit Developer’s Notebook,
http://www.eclipse.org/aspectj/doc/released /adk15notebook/
index.html, 2005.

D. Lea. Patterns-Discussion, http://www.dmresearch.net/
download/Computer/Softeng/pattern/more patterns/Patterns-
discussion FAQ.htm.

P. Avgeriou, U. Zdun, Architectural patterns revisited — a pattern
language, Proceedings of 10th European Conference on Pattern
Languages of Programs, Irsee, Germany, July 2005.

Dumitru Ciorba, Victor Besliu, Received May 21, 2007
Anthony Chronopoulos, Andrei Postaru, Revised October 16, 2007

Dumitru Ciorba, Victor Besliu, Andrei Pogtaru
Technical University of Moldova

Automation & Information Technology Department
str. Studentilor, 7/3, corp 3, 504 Chisinau, MD-2068
Phone: (4373 22) 49 70 18

E—mail: vbesliuQyahoo.com, besliu@Qmail.utm.md
E—mail: diciorbaQyahoo.com

Dr. Anthony T. Chronopoulos
University of Texas at San Antonio
Department of Computer Science
6900 North Loop 1604 West

San Antonio, TX 78249

Phone: (210)458 — 7214

Fax:

(210)458 — 4437

E-mail: atcQcs.utsa.edu

353

