Computer Science Journal of Moldova, vol.19, no.1(55), 2011

Architecting software concurrency

Dumitru Ciorba, Victor Besliu

Abstract

Nowadays, the majority of software systems are inherently
concurrent. Anyway, internal and external concurrent activities
increase the complexity of systems’ behavior. Adequate archi-
tecting can significantly decrease implementation errors. This
work is motivated by the desire to understand how concurrency
can constrain or influence software architecting. As a result, in
the paper a methodological architecting framework applied for
systems with ”concurrency-intensive architecture” is described.
This special term is defined to emphasize architectures, in which
concurrent interactions are crucial. Also in the paper potential
models for each phase of architecting framework are indicated.

Keywords: software architecture, concurrency, concurrency-
intensive architecture, architecting framework, concurrency model,
formalization, specification, CSP#

1 Key challenges in managing concurrency

1.1 Benefits and costs of concurrency

Software development undoubtedly passes a revolutionary period. De-
sired performance can be achieved not only by increasing proces-
sor frequencies. This outlines a future that is determined by multi-
core/multiprocessor architectures and multi-threading programs [1].

The benefits of concurrency reside in the full exploitation of ad-
vantages offered by multi-core/multiprocessor architectures, primarily,
through the possibility to represent naturally and separately concur-
rent activities. This leads directly or indirectly to the key character-
istics of modern software such as: availability, protection, scalability,
performance.

(©2011 by D.Ciorba, V.Besliu

92

Architecting software concurrency

However, concurrency has its costs for organizing inter-thread syn-
chronization and communication. Non-determinism, inherent in con-
current systems, requires taking into account a number of properties
that must satisfy programs (mutual exclusion, absence of deadlock,
livelock, starvation and race conditions, etc.) [2]. Thus the coordina-
tion of activities is complicated, and multithreading related errors are
intermittent and difficult to reproduce. Moreover, synchronization and
communication worsen effects of code scattering and code tangling [3];
involve reuse difficulties due to conflicts between basic functionalities
and synchronization functionalities. These conflicts have been inten-
sively studied and we find in the literature by the name the inheritance
anomaly.

1.2 Inheritance anomalies

Several researchers [4,5,6] have attempted to classify and formalize the
anomalies that make unreasonable or even impossible to reuse the base
class by inheritance, since the redefinition involves an excessive number
of methods. In [7] authors state that any popular modern programming
languages do not exclude yet the occurrence of these anomalies. The
authors propose three generic classes for anomalies where the role of
inheritance as a form of reuse is greatly diminished: history-sensitive
anomaly; partitioning of states; modification of acceptable states.

In [8] it is proposed unified treatment of phenomena in a general des-
ignation - reuse anomalies, arguing that in a concurrency context, the
above mentioned effects can also occur in the case of aggregation and
association relations. This fact is easily claimed in other works. An ex-
ample is the paper [9] which states that adverse phenomena may occur
in cases other than inheritance, referring to the composition anomaly.

In order to investigate this phenomenon, which appears in code
reuse in the context of concurrency, formalization was used in [5]. The
results of formal analysis presented in it have surprised the scientific
community. It can be easily emphasized that the following statements
stand out from a more general content of the research:

e Inheritance anomalies are common to other paradigms, not only

93

D.Ciorba, V.Besgliu

to object-oriented programming: e.g. agent-oriented program-
ming (based on the Actor model [10]);

e If anomaly is present in the implementation, it does not neces-
sarily cause practical problems;

e Inheritance anomaly problem in one form or another still cannot
be resolved, but rather may be reduced adverse effects induced
by anomalies.

Making the concurrency explicit and isolating it into a concurrent com-
ponent, seems to be reasonable solution [11].

1.3 Concurrency “isolation” techniques

Elimination of adverse consequences (by defining separate and explicit
orthogonal functionalities) can be accomplished in many ways at all
levels of abstraction of software development (Figure 1): mix-in classes
[12] and aspects [3,13,14] can be used in order to compose functionali-
ties at implementation phases; design patterns allow us localization and
integration of orthogonal functionalities in analysis and design stages
[15,16]; and programming frameworks can help us improving compo-
nents reuse [17,18,19].

The technological possibility of locating the synchronization code is
not the solution by itself. It happens because the problem of inheritance
anomalies cannot be fully solved [5]. Moreover in [20] the authors state
that aspectization (localization) of concurrency in some cases may even
be dangerous. Thus we have to diminish bad effects of anomalies with
appropriate methods of concurrency management in the early stages of
software development.

1.4 Concurrency management

Concurrency management has to provide a proactive strategy that will
allow concurrency organization and management throughout the soft-
ware life cycle. A successful strategy will be determined by the follow-
ing characteristics:

94

Architecting software concurrency

Low level (implementation) :

« Mixin classes
= Pvihon, Perl, Ruln, efe.

* Aspect-oriented promanuing
= dspect), Aspects eic

Middlelevel (design)

* Programung frameworks

« Sprintg, Hvbernate, Azuli Frennework
*Desiam pattems

= Granmina e all, Grand, efe

High level (analysis)

« Architectural sty les

Figure 1. Abstraction levels of software development

e Process development centered: the strategy will require integra-
tion with existing processes and applications;

e Centrally managed: all development activities must comply with
adopted policies;

e Heterogeneous: the strategy must take into account different or-
ganizational forms of concurrency.

One of the early activities of the strategy should include the classifica-
tion of developed systems in accordance of the degree of concurrency.
Some information systems have no concurrency whilst others become
more concurrent, in order to maximize efficiency determined by a num-
ber of factors (e.g. cheap multiprocessor). In this context, there can
be defined a special term: concurrency-intensive architecture. It is
necessary for emphasizing architecture, where concurrency influences

95

D.Ciorba, V.Besgliu

essentially the architecting. Concurrency-intensive architecture thus
needs a special and distinct architecting approach.

2 Architecting and concurrency

Architecting is a process where the outcome is stakeholder’s satisfaction
towards architectural requirements. In the context of software archi-
tecting, abstraction is one of the main principles. It captures through
encapsulation the essential properties of a system.

There are numerous definitions of architecture. An interesting idea
is mentioned in [21] according to which “a system may be composed of
many levels of abstraction and many phases of operation, each with its
own software architecture”. Anyway the entire concept, according to
some researchers, is ambiguous in relation to information systems re-
search and practice [22]. Even though, most of them define architecture
analogically: as an abstract concept, which provides a certain perspec-
tive on information system [23], it was still necessary to standardize
the architecting process. Finally, IEEE in 2000 [24], and ISO in 2007
[25] have standardized this conception: “the activities of the creation,
analysis and sustainment of architectures of software-intensive systems,
and the recording of such architectures in terms of architectural descrip-
tions”. The main result of this architecting standardization is a clear
and comprehensive documentation of the architecture representations
of information systems in various views.

This approach can be traced from the earliest major research direc-
tions and frameworks for software development. According to [26], ar-
chitecture can be described in five main views: logical, process, physical,
development and scenarios; the last of them is essentially redundant,
but it represents the interaction of the other four (Figure 2).

In the architectural model presented above, planned active pro-
cessing entities, communication structure, integrity, and other archi-
tecturally significant concerns of the control flow management, syn-
chronization and concurrency are described in the process view.

It is important to note that the view, according to definitions from
[24,25,26], is not yet the localization of implemented functionalities;

96

Architecting software concurrency

Logical

view

Scenarios

Process Physical

view view

Figure 2. The “4+1” View Model of Software Architecture [26]

this is the representation of the entire system from some viewpoint of
interrelated requirements (aspects).

Now the following question arises: is it possible to separate syn-
chronization and concurrency concerns from the functional ones and
localize them in a separate structural unit? The answer is simple:
yes, it is possible and necessary [27,28]; but in order to integrate sepa-
rate functionalities, developer has to either use non-traditional aspect-
oriented programming [29], or create applications with loosely coupled
architecture.

In loosely coupled architectures the separation, localization and
composition of functionalities can be achieved by applying adequate
design patterns [30], asynchronous messaging architectures [31], and/or
event-driven architectures [32].

These days, most information systems are inherently concurrent,
since they handle activities that can happen simultaneously in the
world external to the system’s world [33]. It is likely then, that concur-
rency is considered as a critical property of systems and that it must
be considered in the early development stages — architecting stages.

3 Concurrency-intensive software architecting

According to IBM Rational Unified Process™ architecture is defined
during the inception and elaboration phases [34]. This popular software

97

D.Ciorba, V.Besgliu

development process is architecture centric. It means that the system’s
architecture is a primary artifact for system’s development [35]. Thus
the importance of an accurate architecting must be sustained by a
distinct process.

In this context The Visual Architecting Process’™ (VAP) can be
mentioned. It is promoted by Bredemeyer Consulting. According to it,
the architecture specification phase consists of iterative five sub-phases:
Meta- Architecture, Conceptual Architecture, Logical Architecture, Fx-
ecution Architecture and Architecture Guidelines [36]. Concurrency
issues are tightly related with Fxecution Architecture, where analysis
focuses on Process and Deployment views.

Ezecution Architecture phase is the forth one. This allows us to
confirm that concurrency, as a critical property of modern systems,
is considered too late. This can be argued by means of structuralism
[37], according to which “a structure may be defined as a network of
relationships between elements or elementary process... A structure
thus manifests itself by means of relationships; a system manifests it-
self by means of communications of the relevant elements. A function
within a system may be seen as a communicative relationship.” Thus
communication is necessary to “transport” data; but it is the means
of communication by which control information is being transported
as well. This particular communication form is well known as synchro-
nization, which constraints event ordering and controls processing unit
interference. It is usual then, that the concurrency influences systems
via the communication style, hence concurrency must be an important
factor for structural and functional analysis of architecture.

There are numerous architecting methodologies where concurrency
is one of the key factors. Here it’s case to mention Nick Rozanski and
FEoin Woods’ work [38], where concurrency concerns are described from
the point of view of Concurrency Viewpoint.

A viewpoint is a way of looking at the system, and does not capture
architecting focused on concurrency concerns. In this context a generic
framework is proposed below. It will permit us to analyze concurrency-
intensive architecture from the perspective of evolution (Figure 3).

The architecting process, represented in Figure 3, is a waterfall

98

Architecting software concurrency

Conceptual architecture

Structure Animation Interaction Synchronization

Logical architecture
Intensional /Extensional Interleaving True concurrency Linear/Branching

Executable architecture
Analytics / Simulations (prototyping)

Figure 3. Concurrency-intensive software architecting

process with three phases. Each phase defines an architecture model,
which may also include a number of views, where each view is related
to a particular domain of the phase.

Conceptual architecture defines entities, their relationships and con-
ceptual constraints. The structure view can show configurations in
terms of components, which are units of runtime computation or data-
storage, and connectors, which in their turn are the interaction mech-
anisms between components [39].

In order to facilitate structuring, architectural patterns can be used.
A coherent set of related patterns makes up a pattern language. An
interesting pattern language is presented in [40].

The last three views have been inspired by a survey of concurrency
issues presented in [6]. The survey is organized of taxonomy of the
features of concurrent object-oriented languages. In spite of the gen-
eralization of the described models, they allow us to use them in our
architecting process as views.

Animation view shows the relationship between objects and active
entities (process/thread/task). The treatment of threads and objects as
independent or dependent concepts, defines two alternatives of activity

99

D.Ciorba, V.Begliu

organization: unrelated and related models (Figure 4).

- S Irfer-process COmImLmniCo ton
Process 1

Myt | + L e [Abyesce st

Procosa 1 Process 3
o procesd
{ | 0
I. .

Process 2

! Fropaguied actvities) Resrdlewt acinvinies

Figure 4. Unrelated (a) and related (b) models of Animation view

The interaction view depicts interactions between objects initiated
by the client’s invocation, which may be either synchronous or asyn-
chronous. Semantics of returns is defined in this view as well.

Concepts, related to Synchronization view, specify concurrent in-
vocation management. It is important to mention that Conceptual
architecture phase defines rules to synchronize, select and accept op-
erations, and these rules define control constraints used at the next
Logical architecture phase.

Logical architecture conforms to the principles and rules of the con-
ceptual architecture. This phase involves a variety of structures, which
have the nature of mathematical formalisms. Logical architecture thus
is represented by a generalized formal structure that determines logic
of specification, which helps describing and reasoning about behavior
of concurrent architecture.

Numerous formal models have been studied over the past 20-25
years. Formal semantics, provided by these models, can be classified
by partitioning criteria of the following dichotomies [41,42]:

e Intensional and Eztensional semantics,

o Interleaving and True concurrency semantics,

100

Architecting software concurrency

e Branching time and Linear time semantics.

Specifying systems as “machines”, determined by states (and possible
state changes), obtains intensional models. Extensional (also known
as behavior) models focus on occurrence patterns of actions over time.
Concurrency is an implicit property in “true concurrency” models. Yet
interleaving models reduce it to nondeterministic interleaving represen-
tations. Last dichotomy splits models into nondeterministic branching
models and linear time setting models. In the former case, models
describe concurrency in terms of the sets of their possible (partial)
executions.

Formal relationships between models have been analyzed by many
researchers. Here should be mentioned the work [43], where translation
between models have been studied in terms of category theory. Eight
models, more precisely model classes, have been obtained by varying,
in all possible ways, the aforementioned criteria (Figure 5).

Semantics
Mtodel Intensional {1) Interleaving (Int} Branching time(8T)
Extensional (E} True concurrency[TC) Linear time (LT)
Hoare languages (HL) E Int LT
Synehromration rees{5T) E Int BT
Deterministic libelled
event structures [dLES) £ i LT
Labseflod event struchures
[LEs) ; B i
Determinishic transation
Syétens [47%) I it i
Transdtion systéems (15} I nt BT
Deterministic ransation
systems with I T LT
indlependence (dT151)
Transtion systems with | Tt 8T
independence (dT51)

Figure 5. Concurrency models

Positioning of models from Figure 5 in a three-dimensional space
relative to dichotomies is represented in Figure 6.

101

D.Ciorba, V.Begliu

Figure 6. Semantic models for concurrency specification

Ezecutable architecture is a result “product” of the last architect-
ing phase. In the first instance, this term expresses the description of
the system’s architecture in a formal notation, the semantic of which
is being determined by the logic architecture phase. In the second in-
stance, after using automatic or semi-automatic generation tools, this
term may signify a partial implementation of the system — a proto-
type, which must validate all architecturally significant requirements.
A closely related term is the term of evolutionary prototype, which is
not a work product, but it is stable enough to be considered as a first
approximation of a system. According to the article [44], “producing
an evolutionary prototype means that you design, implement, and test
a skeleton structure, or architecture, of the system...”

4 Conclusion

Systems become more concurrent and a new term is needed to define
an architecture influenced essentially by concurrency. In this work a
new term concurrency-intensive architecture is proposed. Also it is be-
ing shown that concurrency, as a key factor, can determine a generic

102

Architecting software concurrency

architecting framework by providing an architectural prototype. It per-
fectly fits in the modern architecture-centric development methodolo-
gies, such as Rational Unified Process. However concurrency generates
difficulties. Still the right methods and tools can decrease the archi-
tecting effort. Mature theories and models of concurrency exist; thus
the key target of researches is: developing of methods and tools of spec-
ification and verification. So an immediate and important objective is
to develop and integrate a graphical language of concurrency specifica-
tion in one of the popular development environments. Language must
expressively specify concurrency, thus must use denotational semantic.
Such specification language based on events will be presented in the
future article. Also, in this article it will be shown how models are
verified with operational semantic of CSP# language.

References

[1] S. Herb. The Free Lunch Is QOver. A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal. [On-
line] March 2005, Vol. 30, 3. [Cited: April 08 2011]
http://www.gotw.ca/publications/concurrency-ddj.htm.

[2] S. Owicki, L. Lamport. Proving Liveness Properties of Concur-
rent Programs. ACM Transactions on Programming Languages
and Systems. July 1982, Vol. 4, 3, pp. 455-495.

[3] G. Kiczales, et al. Aspect-Oriented Programming. Proceedings of
ECOOP’97. s.l.: Springer-Verlag, 1997.

[4] S. Matsuoka, A. Yonezawa. Analysis of Inheritance Anomaly in
Object-Oriented Concurrent Programming Languages. Research
Directions in Concurrent Object-Oriented Programming. s.1.: MIT
Press, 1993.

[5] L. Crnogorac, A.S. Rao, K. Ramamohanarao. Classifying Inheri-
tance Mechanisms in Concurrent Object-Oriented Programming.
Proceedings of ECOOP’98. s.l.: Springer-Verlag, 1998. LNCS
1445.

103

D.Ciorba, V.Besgliu

[6]

[12]

[13]

D.G. Kafura, G. Lavender. Concurrent Object-Oriented Languages
and the Inheritance. [ed.] T. L. Cassavant. Parallel Computers:
Theory and Practice. s.l.: IEEE Press, 1994. pp. 165—198.

G. Milicia, V1. Sassone. The inheritance anomaly: ten years after.
Proceedings of Symposium on Applied Computing (SAC). Nicosia,
Cyprus : ACM, 2004.

D.M. Suciu. Techniques for Implementing Concurrency
i Object-Oriented Analysis and Design. Ph. D. thesis.
[http://cs.ubbcluj.ro/~tzutzu/Research/Teza.pdf]. Cluj-Napoca:
Babeg-Boleay University, 2001.

L. Bergmans, M. Aksit. Composing Software from Multiple Con-
cerns: A Model and Composition Anomalies. Proceedings of ICSE
2000 (2nd) Workshop on Multidimensional Separation of Con-
cerns. 2000.

C. Hewitt. Actor Model of Computation. arXiv.org. [On-
line] Noiembrie 08, 2010. [Cited: Noiembrie 26, 2010.]
http://arxiv.org/abs/1008.1459v8. arXiv:1008.1459v8.

B. Goetz. Concurrency: Past and Present. InfoQ.
[Online] August 26, 2006. [Cited: April 08, 2011)]
http://www.infoq.com/presentations/goetz-concurrency-past-
present.

G. Bracha, W. Cook. Mixin-based inheritance. Proceedings of
OOPSLA/ECOOP ’90. s.1.. ACM Press, 1990.

V. Pavlov. Aspect-oriented programming. IT-Archiv.
[Online] June 2003. [Cited: November 21, 2010.]
http://www.javable.com/columns/aop/workshop/01/index.pdf.

R. Pawlak, L. Seinturier, Ph. Retaillé. Foundations of AOP for
J2EE development. [http://books.google.com]| s.l.: Apress, 2005.
ISBN 1-59059-507-6.

104

Architecting software concurrency

[15]

[16]

[17]

18]

[19]

[20]

E. Gamma, et al. Design Patterns: Flements of Reusable Object-
Oriented Software. s.1.: Addison-Wesley, 1994. ISBN 0-201-63361-2.

D. Lea. Concurrent programming in Java: design principles and
patterns. [http://books.google.com| s.l.: Addison-Wesley, 2000.
ISBN 0-201-31009-0.

M. E. Fayad, D. C. Schmidt. Object-Oriented Application Frame-
works. Communications of the ACM. 1997, Vol. 40, 10.

R.E. Johnson. Frameworks = (components + patterns). Commu-
nications of the ACM. 1997, Vol. 40, 10.

D.C. Schmidt, M. E. Fayad. Building Reusable OO Frameworks
for Distributed Software. Communications of the ACM. 1997, Vol.
40, 10.

J. Kienzle, R. Guerraoui. AOP: Does it Make Sense? The
Case of Concurrency and Failures. Ecole Polytechnique Fédérale
De Lausanne (EPFL). [Online|] 2002. [Cited: April 08, 2011.]
http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_
200216.pdf.

R. T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD dissertation. Irvine: University
of California, 2000.

M. S. Corneliussen. IT Architecturing — Reconceptualizing Current
Notions of Architecture in IS Research. European Conference on
Information Systems. Mart 04, 2008.

D. Garlan. Software Architecture: a Roadmap. [ed.] A. Finkekstein.
The Future of Software Engineering. s.1.: ACM Press, 2000.

M. W. Maier, D. Emery, R. Hilliard. Software Architecture: In-
troducing IEEE Standard 1471. Computer. April 2001, Vol. 34, 4,
pp. 107-109.

105

D.Ciorba, V.Besgliu

[25]

[26]

[27]

28]

International ~ Organization for Standardization. Recom-
mended Practice for Architectural Description of Software-
Intensive Systems. [Online] 2007. [Cited: Decembre 2, 2010.]
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=45991. ISO/IEC 42010:2007.

Ph. Kruchten. Architectural Blueprints — The “4+1” View Model
of Software Architecture. IEEE Software. 1995. Vol. 12, 6.

W. Hiirsch, Cr. Lopes. Separation of Concerns. College of Com-
puter Science, Northeastern University. Boston, USA: s.n., 1995.
Technical report.

C. A. Constantinides, T. Elrad. On the Requirements for Con-
current Software Architectures to Support Advanced Separation of
Concerns. OOPSLA’2000, Workshop on Advanced Separation of
Concerns in Object-Oriented Systems. 2000.

G. Kiczales, et al. Aspect-Oriented Programming. Proceedings of
ECOOP’97. s.l.: Springer-Verlag, 1997.

D. Ciorba, et al. Arch-pattern based design and aspect-oriented
implementation of Readers-Writers concurrent problem. The Com-
puter Science Journal of Moldova. 2007, Vol. 15, 3, pp. 338-353.

G. Hohpe. Integration Patterns QOverview. FEnterprise inter-
gration pstterns. [Online] 2010. [Cited: Dec 06, 2010.]
http://www.eaipatterns.com/eaipatterns.html.

M. Fowler. FEwvent Collaboration. Development of Fur-
ther Patterns of Enterprise Application Architec-
ture. [Online] Jun 19, 2006. [Cited: Dec 05, 2010.]
http://martinfowler.com/eaaDev /EventCollaboration.html.

J. Bacon, T. Harris. Operating systems: concurrent and distributed
software design. s.1.: Pearson Education, 2003. ISBN 0-321-11789-1.

IBM Rational Software. Rational Unified Process. Best Prac-
tices for Software Development Teams. developerWorks®):

106

Architecting software concurrency

[41]

IBM’s resource for developers and IT profession-
als. [Online] Jul 23, 2005. [Cited: May 11, 2011.]
http://www.ibm.com/developerworks/rational /library/content /
03July/1000/1251/1251 bestpractices_TP026B.pdf.

H. Yim, et al. Architecture-Centric Object-Oriented Design Method
for Multi-Agent Systems. Fourth International Conference on
Multi-Agent Systems (ICMAS’00). Los Alamitos, CA, USA: IEEE
Computer Society, 2000. ISBN: 0-7695-0625-9.

R. Malan, D. Bredemeyer. The Visual Architecting Process.
[http://www.bredemeyer.com/papers.htm] s.l.: Bredemeyer Con-
sulting, January 2005.

J.M. Broekman, Structuralism. Synthese library. Monographs on
epistemology, logic, methodology, philosophy of science, sociology
of science and of knowledge. s.l.: Springer, 1974. Vol. 67. ISBN
9-027-70478-3.

N. Rozanski, E. Woods. Software Systems Architecture: Work-
ing with Stakeholders Using Viewpoints and Perspectives. s.l.:
Addison-Wesley Professional, 2005. ISBN 0-321-11229-6.

P. Clements. Documenting software architectures: views and be-
yond. s.l.: Addison-Wesley, 2003. ISBN 0-201-70372-6.

P. Avgeriou, U. Zdun. Architectural Patterns Revisited — A Pattern
Language. In Proceedings of 10th European Conference on Pattern
Languages of Programs (EuroPlop 2005). Irsee, Germany: s.n.,
July 2005. pp. 1-39.

R. Cleaveland, S. A. Smolka. Strategic Directions in Com-
puting Research Concurrency Working Group Report. Stony
Brook University — Department of Computer Science. [On-
line] September 30, 1996. [Cited: January 31, 2011)]
http://www.cs.sunysb.edu/~sas/sdcr/report/final /final.html.

107

D.Ciorba, V.Besgliu

[42]

T. T. Hildebrandt. Categorical ~ Models for Con-
currency: Independence, Fairness and Dataflow.
[http://www.brics.dk/DS/00/1/BRICS-DS-00-1.pdf] Aarhus,
Denmark: University of Aarhus, February 2000. BRICS Disserta-
tion Series. ISSN 1396-7002.

V1. Sassone, M. Nielsen, G. Winskel. Models for Concurrency: To-
wards a Classification. Theoretical Computer Science. 1996. Vol.
170, 1-2, pp. 297-348.

P. Krol. Transitioning from waterfall to iterative development.
developerWorks®): IBM’s resource for developers and IT pro-
fessionals. [Online] April 16, 2004. [Cited: December 18, 2010.]
http://www.ibm.com/developerworks/rational/library/4243.html.

Dumitru Ciorba, Victor Besgliu Received May 28, 2011

Technical University of Moldova

Automation and Information Technology Department

Str. Studentilor, 7/3, corp 3, 504 Chisindu, MD-2068

Phone: (4373 22) 509908

E-mail: victor.besliuQati.utm.md, besliu@mail.utm.md, vbesliuQyahoo.com
E—mail: diciorba@Qyahoo.com, dumitru.ciorba@ati.utm.md

108

